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Abstract—Most computer systems authenticate users only once
at the time of initial login, which can lead to security concerns.
Continuous authentication has been explored as an approach
for alleviating such concerns. Previous methods for continuous
authentication primarily use biometrics, e.g., fingerprint and
face recognition, or behaviometrics, e.g., key stroke patterns.
We describe CABA, a novel continuous authentication system
that is inspired by and leverages the emergence of sensors for
pervasive and continuous health monitoring. CABA authenticates
users based on their BioAura, an ensemble of biomedical signal
streams that can be collected continuously and non-invasively
using wearable medical devices. While each such signal may
not be highly discriminative by itself, we demonstrate that a
collection of such signals, along with robust machine learning,
can provide high accuracy levels. We demonstrate the feasibility
of CABA through analysis of traces from the MIMIC-II dataset.
We propose various applications of CABA, and describe how it
can be extended to user identification and adaptive access control
authorization. Finally, we discuss possible attacks on the proposed
scheme and suggest corresponding countermeasures.

Index Terms—Authentication, behaviometrics, biometrics,
biostreams, biomedical signals, continuous authentication, ma-
chine learning, security, wearable medical devices.

I. INTRODUCTION

Authentication refers to the process of verifying a user
based on certain credentials, before granting access to a secure
system, resource, or area [1]. Traditionally, authentication is
only performed when the user initially interacts with the
system [2]. In these scenarios, the user faces a knowledge-
based authentication challenge, e.g., a password inquiry, and
the user is authenticated only if he offers the correct answer,
e.g., the password.

Although one-time authentication has been the dominant
authentication mechanism for decades [3], several issues
spanning user inconvenience to security flaws have been
investigated by researchers [4], [5]. For example, the user
has to focus on several authentication steps when he tries
to unlock a smartphone based on a password/pattern-based
authentication method. This may lead to safety risks, e.g.,
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distraction when the user is driving. A serious security flaw
of one-time authentication is its inability to detect intruders
after initial authentication has been performed. For example,
an unauthorized user can access private resources of the
authorized user if the latter leaves his authenticated device
unattended, or forgets to log out [6].

The above concerns have led to the investigation of contin-
uous authentication mechanisms. Such mechanisms monitor
the user’s interactions with the device even after initial login
to ensure that the initially-authenticated user is still the one
using the device. Initial efforts in this direction were based
on simple security policies that lock the user’s device after a
period of inactivity, and ask the user to re-enter the password.
However, such schemes may be annoying to users while they
still expose a window of vulnerability, leaving much room for
improvement [7]. Thus, a rapidly-growing body of literature on
the usage of biometrics, i.e., strongly-reliable biological traits
such as facial features, and behaviometrics, i.e., measurable
behavior such as frequency of keystrokes, for continuous
authentication has emerged in the last decade [6], [8].

Recently, wearable medical sensors (WMSs), which mea-
sure biomedical signals, e.g., heart rate, blood pressure, and
body temperature, have drawn a lot of attention from re-
searchers and begun to be adopted in practice [9], [10]. A
recent report by Business Insider [11] claims that 33 million
wearable health monitoring devices were sold in 2015. It
forecasts that this number will reach 148 million by 2019,
and continue to grow rapidly thereafter. We suggest that,
since such biomedical signals will be collected anyway for
health monitoring purposes, they can also be used to aid
authentication. The use of continuously-collected biomedical
data for user verification and identification seems promising
for three reasons. First, if the biomedical signals are collected
by WMSs for medical purposes, using them for authentication
does not require any extra device that is not already on the
body. Second, this information is collected transparently to
the user, i.e., with minimal user involvement. Third, unlike
traditional biometrics/behaviometrics, e.g., face features and
keystroke patterns, information that may frequently become
unavailable, the stream of biomedical signals collected by
WMSs is always available when the person is wearing WMSs.

In this paper, we present CABA, a transparent continuous
authentication system based on an ensemble of biomedical
signal streams (Biostreams in short) that we call BioAura 1. A

1Aura is traditionally defined as the energy field around a person. Analo-
gously, we use the term BioAura to define the biological field around a person,
manifested as a set of Biostreams.
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Biostream is a sequence of biomedical signal samples that are
continuously gathered by a WMS for medical diagnosis and
therapeutic purposes. The most important difference between
a Biostream and a biometric trait is that a Biostream alone
does not have enough discriminatory power to distinguish
individuals. Thus, an authentication decision based on a
single Biostream, e.g., body temperature or blood pressure,
is unlikely to be sufficiently discriminative. However, when
multiple Biostreams are combined into a BioAura, it leads to
a powerful continuous authentication scheme.

Our key contributions can be summarized as follows:
1) We suggest a list of design requirements for any contin-

uous authentication system.
2) In order to analyze the discriminatory power of BioAura,

we propose a continuous authentication system based
on BioAura (called CABA) and investigate it from both
accuracy and scalability perspectives.

3) We suggest an adaptive authorization scheme and de-
scribe how it can be used to alleviate user inconve-
niences associated with the use of continuous authen-
tication systems that might falsely reject the user.

4) We describe various possible attacks against the pro-
posed continuous authentication system along with sev-
eral countermeasures to prevent such attacks.

The rest of the paper is organized as follows. Section
II describes the requirements that should be targeted in the
design of continuous authentication systems and discusses
how CABA addresses such requirements. Section III describes
BioAura and the Biostreams that form the proposed BioAura.
Section IV discusses the scope of CABA applications. Sec-
tion V describes the CABA prototype and our experimental
setup. Section VI investigates CABA from both accuracy and
scalability perspectives. Section VII describes how CABA
can support identification, i.e., the process of recognizing a
user without knowing his user ID. Section VIII presents an
adaptive authorization scheme that can be used along with
CABA to enhance user convenience. Section IX discusses
possible attacks against the proposed authentication system
and describes different countermeasures against each attack.
Section X discusses related work and compares CABA with
previously-proposed continuous authentication systems. Sec-
tion XI briefly describes possible privacy concerns surrounding
the use of biomedical signals, how CABA can be used as a
stand-alone one-time authentication system, and the effects of
temporal conditions on authentication results. Finally, Section
XII concludes the paper.

II. DESIRABLE AUTHENTICATION REQUIREMENTS

In this section, we first describe the desirable requirements
that every continuous authentication system must satisfy. Then,
we discuss how CABA addresses such requirements.

A. Design-octagon

Even though several continuous authentication systems have
been proposed in the past, they have not been evaluated against
a comprehensive list of design requirements. A few studies,
e.g., [12]–[14], consider a small set of requirements, e.g., cost

and accuracy. However, there is no standard list of design
requirements that a continuous authentication system must
satisfy. We suggest such a list below. We call it the Design-
octagon since it comprises eight design requirements (Fig. 1):

Availability

Extensibility

Low cost

Scalability

Efficiency

Accuracy

Passiveness

Stability

Authentication 	

requirements

Fig. 1. Design-octagon: Desiderata for a continuous authentication system.

Passiveness: A user-friendly system must not require frequent
user involvement [15]. For example, if the authentication
system asks the user to re-enter his credentials often, it may
be quite annoying to the user [13].
Availability: The system should provide a reliable authenti-
cation system at all time instances [13]. Lack of continuous
availability is a significant drawback of several previously-
proposed continuous authentication systems – they may often
fail due to a lack of sufficient information [16]. For instance, a
keyboard-based system may unintentionally reject a legitimate
user when he is watching a movie and not using the keyboard.
High accuracy: Undoubtedly, the most important requirement
of every authentication system is high accuracy. The system
should be able to confidently and accurately distinguish legit-
imate users from impostors, and reject impostors’ requests.
Scalability: The system should be able to handle a growing
amount of work when the number of users increases [3].
In particular, its time and space complexity should increase
modestly with an increase in the number of users [17].
Efficiency: A short response time, i.e., the time required to
capture a test sample, process it, and provide a decision, is
very desirable for two reasons. First, it is desirable for the
system to quickly authenticate a legitimate user and reject an
impostor to ensure user convenience [3]. Second, security may
also suffer if there is an appreciable delay. For example, if
authorization takes five minutes, an impostor may be able to
control the system and access restricted resources in that five-
minute timeframe, while the system is still processing.
Low cost: Cost is an important factor in authentication
systems used in low-security environments, e.g., in personal
computers [13], [18]. In such environments, the cost of adding
or modifying the authentication system should ideally be neg-
ligible. Thus, systems that do not need extra peripherals, such
as retina scanners, would be generally preferred. However,
for highly-secure environments, e.g., military bases, expensive
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authentication systems could be deployed [14].
Stability: Any trait that is recorded for processing for au-
thentication purposes must ideally have only slight changes or
maintain its pattern over a certain time period [18], [19].
Extensibility: The authentication system should be able to
function on a wide variety of devices regardless of underlying
hardware. Ideally, the system should not require dedicated
hardware. One of the advantages of password-based authen-
tication is that it can be easily extended to protect a large
number of systems, devices, and resources with minimal
system modification [3].

B. Addressing desirable requirements
In this subsection, we describe how CABA ensures all of

the requirements discussed above.
Passiveness: In CABA, passiveness is addressed through the
use of WMSs. These are small and compact sensors that are
specifically designed to take the passiveness requirement into
account, since continuous health monitoring needs to mini-
mize user involvement. Thus, passiveness is not only a very
desirable requirement for continuous authentication, but also
a significant consideration in designing WMSs. Unfortunately,
major biometrics-based systems, e.g., fingerprint-based, do not
provide a high level of passiveness.
Availability: The use of WMSs as capture devices also ensures
a continuous stream of information since this is also required
for continuous health monitoring. However, neither biomet-
rics nor behaviometrics guarantees availability. For example,
keyboard/mouse-based continuous authentication systems fail
when the user stops using the dedicated peripherals.
Accuracy: The accuracy of CABA is extensively investigated
in Section VI in various experimental scenarios. Section X
demonstrates that the accuracy of CABA, which is based on an
ensemble of weakly discriminative Biostreams, is comparable
to previously-proposed systems, which are based on strong
biometrics.
Scalability: The scalability of CABA is investigated in Section
VI based on two scalability metrics (time complexity and
space complexity). Our analysis shows that an increase in the
number of users can be easily handled in this system.
Efficiency: Authentication can be done in a few milliseconds.
For each authentication attempt, the user can immediately
provide the required data since the data are already collected
using WMSs. The efficiency of the system is described in more
detail in Section VI.
Low cost: As discussed later in Section III, the proposed
BioAura consists of Biostreams that are collected for continu-
ous health monitoring. If the user is already using a continuous
health monitoring system, CABA can offer continuous authen-
tication with minimal cost.
Stability: Our investigations of different Biostreams and their
high authentication accuracy over different timeframes demon-
strate that the collected Biostreams maintain their pattern over
time. Therefore, they can be used as authentication traits.
Extensibility: By decoupling the collection of Biostreams
from the authenticating device, CABA can be implemented in
any general-purpose computing device with sufficient mem-
ory capacity and computation power. Unfortunately, neither

biometrics- nor behaviometrics-based systems provide signifi-
cant extensibility. For example, the nature of keyboard/mouse-
based authentication schemes inherently limits their appli-
cations, i.e., they can only be used for implementing an
authentication mechanism in a system that has a keyboard or
a mouse.

III. BIOAURA

In this section, we first briefly describe how Biostreams can
be collected using WMSs. Then, we discuss which Biostreams
constitute the BioAura.

As mentioned earlier, BioAura is an ensemble of
Biostreams, which are gathered by WMSs for medical di-
agnosis and continuous health monitoring. The most widely-
used scheme for continuous health monitoring consists of two
classes of components: (i) WMSs and (ii) a base station [20].
All WMSs transmit their data to the base station either for
further processing or long-term storage. In recent years, smart-
phones have become the dominant base station since they are
powerful and ubiquitous, and their energy resources are less
limited relative to WMSs [20], [21]. Fig. 2 illustrates a simple
continuous health monitoring system that consists of several
small lightweight WMSs, which transmit their biomedical data
to the smartphone over a Bluetooth communication link.

Smartphones can perform simple preprocessing to extract
values of some important features from the data, and transmit
those values. In CABA, the smartphone first executes a very
simple feature extraction function that computes the average
value of the samples in each Biostream over the last one-
minute timeframe of data. Then, it only transmits a feature
vector that contains these average values.

Electrocardiogram	

Respiratory rate	


Heart rate

Electrocardiogram	

Body temperature	

Oxygen saturation	


Heart rate

Respiratory rate	

Heart rate

Blood Pressure	

Heart rate

Smartphone

Fig. 2. A continuous health monitoring system consisting of several small
lightweight WMSs that transmit biomedical data to the smartphone.

As mentioned earlier in Section I, with the expected
widespread use of WMSs, CABA can be used to provide a
continuous authentication system as a side benefit of con-
tinuous health monitoring systems. Our proposed BioAura
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consists of Biostreams that are essential for routine continuous
health monitoring, and their collection needs minimum user
involvement. Such Biostreams are expected to be included in
long-term continuous health monitoring systems.

Table I shows the most widely-used Biostreams, their
abbreviations/notations used in the medical literature, and
their units [20], [22]. In this paper, we exclude the first three
ones from the proposed BioAura, and include the other nine.
Next, we discuss why the three Biostreams are excluded.
Electroencephalogram (EEG): EEG is excluded from
BioAura because it cannot be conveniently captured. The
current method for capturing EEG requires the user to wear
a cap. Moreover, its capture devices cannot be miniaturized
further because electrodes need to form a minimum diameter
to be noise-robust [23].
Electrocardiogram (ECG): Even performing a low-
complexity feature extraction on one minute of ECG signals
requires at least 400× more operations than performing a
simple statistical feature extraction, e.g., averaging, on the
respiratory rate values [24]. This would place a significant
computational and energy demand on battery-powered devices
such as smartphones and wearables. If we try to avoid the
preprocessing, i.e., feature extraction, on the smartphone and
just transmit the ECG signals to the authentication system,
this would also entail significant energy consumption since
ECG waveforms contain at least 200 samples/s [20], [25].
Blood glucose (BG): BG is excluded because currently the
devices that measure BG are invasive, i.e., they require a
sample of the user’s blood.

Although we have currently used nine Biostreams to form
the BioAura in the prototype implementation, CABA need
not necessarily be limited to these nine. As other compact
WMSs become available in the future, they could also be
made part of the BioAura.

TABLE I
BIOSTREAMS, THEIR ABBREVIATIONS/NOTATIONS, AND UNITS

Biostream Abbreviations/Notations Unit
Electroencephalogram EEG µV

Electrocardiogram ECG µV

Blood glucose BG mg/dL

Arterial systolic blood pressure ABPSYS mmHg

Arterial diastolic blood pressure ABPDIAS mmHg

Arterial average blood pressure ABPMEAN mmHg

Heart rate HR 1/min

Pulmonary systolic artery pressure PAPSYS mmHg

Pulmonary diastolic artery pressure PAPDIAS mmHg

Body temperature T Celsius

Oxygen saturation SPO2 %

Respiratory rate RESP 1/min

IV. SCOPE OF APPLICATIONS

In this section, we describe the possible applications of
CABA. The concept of continuous authentication based on
BioAura can be used to protect (i) personal computing devices

and servers, (ii) software applications, and (iii) restricted
physical spaces. Next, we conceptually describe how CABA
can be used to protect each domain.

Computing devices, e.g., personal computers, laptops,
tablets, and cell phones, or servers can employ two different
approaches to utilize CABA: (i) they can use their own
computing resources to implement a stand-alone version of
CABA, or (ii) they can simply use decisions made by a version
of the scheme implemented on a trusted server. We investigate
both approaches.

Example 1: Suppose a tablet wants to authenticate its
user. The tablet may be unable to dedicate its limited mem-
ory/energy resources to support the whole authentication pro-
cess. In such a scenario, it can use decisions made by a
trusted server running CABA. Fig. 3 illustrates this scenario.
When the user tries to unlock the tablet, it informs the user’s
smartphone. The smartphone asks the trusted server to open a
secure communication channel. The smartphone then sends the
information required for specifying the device that needs to be
unlocked, e.g., the tablet ID, along with the information that
needs to be processed to authenticate the user, e.g., the user ID
and a preprocessed frame of data points from his BioAura, to
the trusted server. The server then authenticates the user and
sends this decision to the tablet. After initial login, the trusted
server demands fresh data points at certain intervals.

Example 2: Suppose the user wants to login to his personal
computer. In this case, the computer has enough computational
power and energy capacity to implement a stand-alone version
of CABA. This case is similar to the one in Example 1, except
that there is no need for a trusted server (Fig. 4).

This is #LOCK_ID! 	

Send your authentication	


 information to the server now!

Authentication information

Send fresh data points!

Open a secure channel!

Authentication information

Smartphone Trusted server

#LOCK_ID
OK!

Authentication time
Authentication interval

Server-smartphone communication

Ti
m

el
in

e

#USER_ID

Tablet

Open a secure channel!
OK!

Decision

Decision

Server-lock communication
Smartphone-tablet communication

Fig. 3. The tablet wants to authenticate the user. The vertical arrows depict
the timeline.

Similarly, CABA has the potential to provide continuous
authentication for applications that need strong authentication,
e.g., e-commerce applications. Its authentication decisions can
be made on the same device that runs the application or on a
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Your information is required!

Authentication information

Send fresh data points!

Open a secure channel!

Authentication information

Smartphone Personal computer

#USER_ID
OK!

Authentication time
Authentication interval

Server-computer communication

Ti
m

el
in

e

Fig. 4. The laptop wants to authenticate the user before allowing the user to
utilize its resources or software applications.

powerful trusted server and then transmitted to the device that
runs the application.

Example 3: Consider an online banking application that is
installed on the user’s smartphone. When the user opens the
application to access his bank account, the smartphone opens
a secure communication channel with the trusted server. Then,
the smartphone sends the required information for specifying
the application, e.g., the application ID, along with information
needed for authenticating the user. The rest of the protocol is
the same as before.

Finally, CABA can be used to control access to restricted
physical spaces, e.g., buildings. Typically, the electronic device
that controls the entrance, e.g., a smart lock, would not have
enough computation power to use a stand-alone version of
CABA. Hence, in such cases, the scheme can be implemented
on a trusted server, and decisions then transmitted to the
device. This case is similar to the one depicted in Fig. 3, with
the tablet replaced by the lock.

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, we first describe our implementation of
CABA. We then discuss our experimental setup and different
metrics that we used to investigate the proposed system.

A. Prototype implementation

Similar to other authentication systems, CABA has two
operating phases: (i) enrollment phase in which CABA builds
machine learning-based models for each user, given the train-
ing data, and (ii) user authentication phase in which the system
continuously authenticates the user. The description of the two
phases is presented next.

1) Enrollment phase: In the enrollment phase, the authenti-
cation system is given a training dataset. The system builds the
model using a supervised learning approach, i.e., a machine

learning approach in which the model is built based on labeled
training data points.

Generally, the amount of information needed to build a
model varies from one application to another. As we elaborate
later in Section VI, we evaluated the number of training data
points needed to investigate how much information should
be sent to the authentication system to build a reliable and
accurate model. Each data point in the training set is nine-
dimensional and consists of the average values of successive
measurements of a Biostream over a one-minute timeframe.
The value of each dimension is represented using half-
precision floating-point format that requires two bytes of
storage. Therefore, if the smartphone needs to transmit data
points extracted over a one-hour period, it only needs to send
1080 bytes of data to the authentication system over this
period.

In order to maintain reliability, CABA should train a new
model based on fresh biomedical data obtained at certain
intervals. In other words, CABA should update the model
regularly to ensure that the model maintains accuracy and can
distinguish legitimate users from impostors. The frequency of
model update, i.e., how frequently CABA should repeat the
enrollment phase, depends on several factors, such as required
accuracy and learning time. As we show later in Section VI,
our experimental results indicate that when CABA re-trains
the model every four hours, it achieves the best accuracy and
the learning time is only a few minutes. Learning can be done
transparently to the user. In other words, CABA can re-train
the model while the user continues to be authenticated. For
example, suppose the enrollment phase takes five minutes each
time and is repeated every four hours, i.e., each model is used
for four hours. CABA can start re-training to generate a new
model after 3 hours and 55 minutes, and be ready with it after
four hours have elapsed.

2) User authentication phase: In this phase, the system
makes decisions using the already-trained model. In a continu-
ous authentication scenario, the system should verify the user’s
identity at certain intervals. The frequency of authentication
depends on several factors, such as the required level of
security and the amount of information required for one
authentication. In our prototype implementation, CABA re-
authenticates the user every minute based on a given nine-
dimensional data point Y that contains the average values
of the chosen Biostreams over a specified time interval.
When the user approaches the authentication system and
requests authentication, the smartphone performs a simple
computation on the already-gathered Biostreams and provides
Y . Therefore, unlike most previously-proposed continuous
authentication systems, e.g., keyboard/mouse-based systems,
that require the user to wait while they collect authentication
information, CABA obtains the required information almost
instantaneously because the information has already been
gathered and stored on the smartphone for the purpose of
health monitoring.

Fig. 5 illustrates how CABA works when the user requests
authentication. In a single verification attempt:

1) The smartphone preprocesses one minute of Biostreams
collected from the user’s BioAura. Then, it transmits the
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preprocessed information (Y ) along with user ID to the
authentication system.

2) The Look-up stage sends Y to the appropriate classifier
in the Jury stage based on the given user ID.

3) The dedicated classifier processes Y and outputs a
binary decision (accept or reject).

Jury

Classifier 1
Look-up
#ID #ADD

1

2

N

.
[Y,ID]

[Decision]

...

[Y] Classifier 2

Classifier N

..

Verification system

Smartphone

Fig. 5. User authentication phase: The user’s smartphone provides Y and the
user ID, and CABA outputs the decision.

Next, we provide a detailed description of Look-up and Jury
stages.
Look-up stage: This stage forwards the nine-dimensional
vector Y provided by the smartphone to the appropriate
classifier based on the given user ID. In order to provide a
fast search mechanism to find the appropriate classifier, this
stage can be implemented using a hash table that associates
user IDs with pointers to the classifiers.
Jury stage: The Jury stage consists of N binary classifiers,
where N is the number of people who need to be authen-
ticated. The i-th classifier is trained to only accept the data
point Y that is extracted by the i-th user’s smartphone from
his BioAura. The training set of the i-th classifier consists of
the i-th user’s data points labeled as “accept” and others’ data
points labeled as “reject”.

We have used two well-known binary classification meth-
ods: Support Vector Machine (SVM) [26] and Adaptive Boost-
ing (AdaBoost) [27]. Next, we briefly describe each method.

• SVM: The basic concept in an SVM is to find a hy-
perplane that separates the n-dimensional data into two
classes. However, since the data points in the dataset
are not usually linearly separable, SVMs introduce the
concept of kernel trick that projects the points into a
higher-dimensional space, where they are linearly sep-
arable. When no prior knowledge about the dataset is
available, SVMs usually demonstrate promising results
and generalize well. A great number of previous research
studies that perform authentication using machine learn-
ing methods only consider SVM with a linear kernel [28]
or radial basis function (RBF) kernel [29]. In our paper,
we decided to investigate both.

• AdaBoost: Although SVM has been commonly used in
previously-proposed continuous authentication systems
in a variety of scenarios, we decided to include Ad-
aBoost as well. The idea behind AdaBoost is to build

a highly accurate classifier by combining many weak
classifiers that always perform a little bit better than
random guessing on every distribution over the training
set [27]. Since biomedical signals are individually slightly
discriminative, they lead to weak classifiers, which can
be collectively turned into a strong classifier using Ad-
aBoost. Choosing appropriate types of weak classifiers
is a significant consideration in AdaBoost. The most
commonly used weak learning methods for implement-
ing AdaBoost-based classifiers are decision stumps (also
called one-node tree) and decision trees.

B. Experimental Setup and Metrics

Here, we first describe the parameters and dataset used in
our experiments. Then, we discuss the accuracy and scalability
metrics used to investigate the proposed authentication system.

1) Experimental parameters and dataset: Next, we discuss
the parameters used in our experimental setup and describe
the dataset.
Parameters: We need the following five parameters in our
experiments.

• Dataset length (L): This is the duration of Biostreams
measurements, i.e., the number of hours of information
we have for each person in our data set. In our experi-
ments, we used 14 hours of data for each individual, i.e.,
L = 14h.

• Dataset dimension (n): This is the number of Biostreams
that form the BioAura of an individual. In our setup,
we have included nine Biostreams for each person, i.e.,
n = 9.

• Dataset size (N ): This is the number of people in the
dataset. For our experiments, we could only find 37 users
(N = 37) in our dataset for whom the data: (i) include
the nine targeted Biostreams, and (ii) are available over
several hours with minimal missing values (we excluded
a user for whom the data were not available for more
than two consecutive hours).

• Training window size (TRW ): This represents the dura-
tion of the signal measurements (expressed in hours) for
each individual that we used for training the model in
the enrollment phase. For example, if TRW is 1 hour, it
means we have included 60 data points in our training set,
where each point is a nine-dimensional vector consisting
of the average values of successive measurements of
the nine Biostreams over a one-minute timeframe. We
vary TRW in our experiments to study its impact on the
model’s accuracy.

• Testing window size (TEW ): This represents the dura-
tion of signal measurements (expressed in hours) for each
individual for investigating the accuracy of the trained
model in the user authentication phase. We vary the value
of TEW in our experiments to investigate its impact on
the performance of CABA.

Dataset: In order to investigate the accuracy of CABA, we
used a freely available multi-parameter dataset, called MIMIC-
II [30]. MIMIC-II was gathered in a controlled environment
in which each user remains almost stationary during data
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collection. It has been extensively used in the medical and
biomedical fields. It consists of several anonymized high-
resolution vital sign trends, waveforms, and sampled biomed-
ical signals for many individuals. We chose the 37 medical
records in MIMIC-II that provide values for all of the required
Biostreams for at least 14 hours. Biostreams were sampled
using patient monitors (Component Monitoring System Intel-
livue MP-70 and Philips Healthcare) at the sampling rate of
125 Hz [30].

2) Accuracy metrics: Next, we describe five metrics that we
used for analyzing the accuracy of the proposed authentication
system. The first three are traditionally used for examining
authentication systems. We define two more to investigate the
accuracy in the context of continuous authentication.

• False acceptance rate (FAR): This is the ratio of falsely
accepted unauthorized users to the total number of invalid
requests made by impostors trying to access the system.
In the context of continuous authentication, we use the
notation FARt=TEW to denote FAR under TEW . A
lower FAR is preferred in cases in which security is very
important [31].

• False rejection rate (FRR): This refers to the ratio of
falsely rejected requests to the total number of valid
requests made by legitimate users trying to access the
system. We use the notation FRRt=TEW to denote
FRR under TEW . A lower FRR is preferred for user
convenience [31].

• Equal error rate (EER): This is the point where FAR
equals FRR. Reporting only FRR or FAR does not
provide the complete picture because there is a trade-off
between the two since we can make one of them low
by letting the other one become high. Therefore, we use
EER (instead of FRR or FAR) for reporting CABA’s
accuracy. As before, we use the notation EERt=TEW to
denote EER under TEW .

• False acceptance worst-case interval (FAW ): The output
of the authentication system in a time period T is a
sequence of accept/reject decisions. As an example, Fig. 6
shows two possible output sequences over a ten-minute
authentication timeframe when an impostor is trying
to get authenticated. In both sequences, the number of
falsely accepted requests is the same. However, in a
continuous authentication scenario, the second sequence
would be considered worse since the impostor can use
the system over a four-minute timeframe without being
detected, whereas in the first case the impostor can
only use the system over a one-minute timeframe. We
define FAW as the longest time interval (expressed in
minutes for CABA) over which an impostor can be falsely
accepted as a legitimate user. In the example of Fig. 6,
FAW is one minute and four minutes for the first and
second cases, respectively.

• False rejection worst-case interval (FRW ): Analogously
to FAW , we define FRW as the longest time interval
(expressed in minutes) over which a legitimate user might
be falsely rejected and marked as an impostor.

… A R A R A R R R A R …

… R A A A A R R R R R …

Sequence 1

Sequence 2

Fig. 6. Two possible output sequences over a ten-minute authentication
timeframe. A (R) refers to an accept (reject) decision.

3) Scalability metrics: As mentioned in Section II, the time
and space complexity of the authentication system should
increase modestly with an increase in the number of users.
In order to investigate the scalability of the proposed method,
we express the time and space complexities of CABA using
the well-known O notation, as a function of N (number of the
people in the dataset).

VI. AUTHENTICATION RESULTS

In this section, we investigate CABA from both the accuracy
and scalability perspectives.

A. Authentication accuracy

In order to investigate the accuracy of the authentication
system, we implemented a prototype of CABA in MATLAB.

The accuracy of a model is generally investigated using
a set of data points that is different from the set used in
constructing the model. Thus, in order to train and test a
model, the dataset can be divided into two parts: training and
test sets. The classical K-fold cross-validation is not suitable
for estimating the performance of a system that processes a
time series, i.e., a sequence of data points consisting of suc-
cessive measurements, because potential local dependencies
across observations in a time series define a structure in the
data that will be ignored by cross-validation [32]. Thus, in this
work, instead of using traditional cross-validation, we designed
several experimental scenarios for evaluating the accuracy of
the authentication system. We describe these scenarios next.

1) Baseline: In the baseline scenario, we break the available
dataset into two equal parts, i.e., TEW = TRW = 7h.
We use the first half of the dataset (the first seven hours)
of each individual to train the model and the second
half to test it. We use all the Biostreams, i.e., n = 9,
to train and test our system. We use two classification
methods: SVM and AdaBoost. In the case of SVM,
we use two kernels (linear and RBF). In the case of
AdaBoost, we consider decision stumps (one-node tree)
and decision trees with 5, 10, 15, and 20 nodes as
weak classifiers. We run 40 iterations for all Adaboost-
based classifiers since we determined experimentally
that the training error becomes zero within these many
iterations and testing error becomes minimum. The value
of EERt=7h is reported in Table II for all classifiers.
AdaBoost with a tree size of 15, i.e., with 15 nodes in the
tree, has the minimum value of EERt=7h. Increasing
tree size usually improves the accuracy of Adaboost-
based classifiers. However, using larger trees leads to
more complex models, which are more susceptible to
overfitting [33]. This can be seen when we move from
a tree size of 15 to 20.
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TABLE II
CLASSIFIERS AND THEIR EERt=7h

Type of classifier Specification EERt=7h (%)

SVM Kernel = Linear 3.0
Kernel = RBF 2.6

AdaBoost Tree size = 1 3.1
Tree size = 5 2.9
Tree size = 10 2.9
Tree size = 15 2.4
Tree size = 20 2.5

Table III summarizes FAW and FRW for all classifi-
cation schemes. Consider RBF SVM as an example. Its
FAW is 4 minutes, which suggests that, in the worst
case, an impostor can deceive the authentication system
for a 4-minute timeframe. Its FRW is 3 minutes, which
suggests that, in the worst case, a legitimate user is
falsely rejected for a stretch of 3 minutes.

TABLE III
CLASSIFIERS AND THEIR FAW AND FRW

Type of classifier Specification FAW (min) FRW (min)

SVM Kernel = Linear 4 3
Kernel = RBF 4 3

AdaBoost Tree size = 1 5 3
Tree size = 5 4 3
Tree size = 10 4 3
Tree size = 15 4 3
Tree size = 20 4 4

2) Biased FARt/FRRt: Even though it is easier to com-
pare authentication methods based on their EERt, we
may want to minimize FARt in highly-secure environ-
ments in order to ensure that an impostor is not autho-
rized or minimize FRRt to enhance user convenience.
A low FARt indicates a high security level and a low
FRRt ensures user convenience. In this experimental
scenario, we use the same parameters that are used in the
baseline. However, false acceptance and false rejection
are penalized differently. We consider two cases: (i) try
to make FARt close to zero (FARt=7h < 0.1%) and
measure FRRt, and (ii) try to make FRRt close to zero
(FRRt=7h < 0.1%) and measure FARt. Tables IV and
V summarize the results for these two cases. Based on
Table IV, CABA can be seen to ensure that impostors
are not accepted, but at the cost of an increase in FRR.
Based on Table V, CABA can be seen to not negatively
impact user convenience, i.e., not falsely reject the user,
while rejecting impostors in more than 90% of the cases.

3) Variable window size: As mentioned earlier, we set
the training and testing window sizes to 7h in the
baseline. Here, we change the size of the training and
testing windows such that TRW = 2, 3, · · · , 12h and
TEW +TRW = 14h. Fig. 7 shows the average EERt

for different classifiers with respect to TRW . For all
classifiers, as we increase TRW from 2h to 6h, EERt

decreases drastically. Then it remains almost constant
until TRW reaches 11h. Above this TRW , EER starts
increasing for two possible reasons. First, the model may

TABLE IV
CLASSIFIERS AND THEIR FRR (FAR ≈ 0)

Type of classifier Specification FRR(%)

SVM Kernel = Linear 10.2
Kernel = RBF 9.6

AdaBoost Tree size = 1 10.0
Tree size = 5 9.7
Tree size = 10 8.7
Tree size = 15 8.4
Tree size = 20 8.9

TABLE V
CLASSIFIERS AND THEIR FAR (FRR ≈ 0)

Type of classifier Specification FAR(%)

SVM Kernel = Linear 8.9
Kernel = RBF 7.6

AdaBoost Tree size = 1 10.7
Tree size = 5 9.2
Tree size = 10 7.8
Tree size = 15 7.6
Tree size = 20 8.2

become overfitted. Second, the number of test points
may be inadequate.
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Fig. 7. Average EERt for different classifiers with respect to TRW .

4) Moving training window: In this scenario, the training
window moves behind the testing window (Fig. 8). We
consider TEW = TRW = 1, 2, · · · , 7h. Our experi-
mental results demonstrate that this verification scheme
provides the best result for TEW = TRW = 4h, for
which the average EERt is 1.9% and the classification
method is AdaBoost with a tree size of 15 nodes.
This suggests that we can achieve the best accuracy
for TRW = 4h, under the assumption that the trained
model is valid for the next four hours.
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Fig. 8. Moving training window.
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5) Reducing the number of Biostreams: We also investi-
gate the impact of dropping a Biostream. Traditionally,
feature reduction is used to remove redundant or irrel-
evant features from the data set before commencing on
the training process in order to decrease unnecessary
computational cost. However, in our scenario, the main
purpose of feature reduction is to investigate how each
feature affects accuracy. If CABA can provide an accept-
able accuracy with fewer features, fewer WMSs would
be required. We dropped one feature at a time and com-
puted EERt=7h of the system. All other configurations
are kept the same as in the baseline. Fig. 9 illustrates
how EERt=7h changes for each of the seven classifiers
used in our experiments (two SVM classifiers with
different kernel types and five AdaBoost classifiers with
different tree sizes) when we drop different Biostreams.
The green bar shows the baseline scenario in which
no feature is dropped. We can see that dropping the
respiratory rate (temperature) has maximum (minimum)
negative impact on authentication accuracy. Thus, the
most and least important Biostreams are respiratory rate
and body temperature, respectively.

SVM(Linear) SVM(RBF) AdaBoost(1) AdaBoost(5) AdaBoost(10)AdaBoost(15)AdaBoost(20)
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Fig. 9. EERt=7h for different classifiers when Biostreams are dropped one
at a time. The green bar depicts the baseline scenario in which no feature
is dropped. The abbreviations/notations provided in Table I are used to label
other bars.

B. CABA scalability

We discuss below the worst-case time and space complex-
ities of CABA.

1) Time complexity: As discussed earlier, CABA can be
implemented in such a manner that the time required by the
enrollment phase is hidden from the user’s perspective. Hence,
we focus on the time complexity of the user authentication
process. We found that the required time for processing an
authentication request for N = 37 was on the order of a
few milliseconds for all classification methods, when CABA
was implemented on a MacBook Pro (2.3 GHz Intel Core i7
processor with 8 GB memory). This suggests that CABA can
re-authenticate the user very quickly.

When a person requests authentication by providing his ID
and feature vector Y , the Look-up stage forwards Y to one

and only one classifier in the Jury stage based on the given
user ID. Then, the classifier’s decision is the final decision of
the authentication system. Hence, in order to analyze the time
complexity of a single user authentication process, we need to
consider the time complexity of the Look-up stage, and one
classifier in the Jury stage, as follows:

• Look-up stage: If the Look-up stage is implemented using
a hash table that associates user IDs with pointers to
classifiers, then its search operation (finding the location
of the classifier associated with the user ID) can be
performed in O(1) time.

• One classifier in the Jury stage: The time complexity of
the classifier varies from one classification algorithm to
another. The time complexities of AdaBoost classifiers
and the SVM classifier with a linear kernel do not
depend on N , i.e., they have time complexity of O(1).
The time complexity of SVM with an RBF kernel is
O(nSV ), where nSV is the number of support vectors.
Theoretically, nSV grows linearly with a linear increase
in N . Thus, the SVM classifier with an RBF kernel has
a time complexity of O(N).

Hence, the overall time complexity of user authentication is
O(1) for AdaBoost classifiers and the SVM classifier with a
linear kernel, and O(N) for the SVM classifier with an RBF
kernel.

2) Space complexity: We first investigate how much mem-
ory is required for our prototype implementation of CABA.
Then, we discuss how the amount of memory required to store
the two stages (Look-up and Jury) increases with N .

The amount of memory required for storing the Look-up
stage in our prototype, where N = 37, was less than 1 kB.
The amount of memory required for storing a single classifier
in the Jury stage varies from tens of bytes (for SVM with a
linear kernel) to a few kB (for AdaBoost with a tree size of
20). Therefore, the total amount of memory allocated to the
authentication system is less than 1 MB.

We investigate the space complexity as a function of N .
• Look-up stage: If the Look-up stage is implemented using

a hash table, its space complexity is O(N).
• Jury stage: The space complexity of a single classifier

in the Jury stage depends on the type of classifier. The
space complexities of AdaBoost classifiers and the SVM
classifier with a linear kernel do not depend on N , i.e.,
they have space complexity of O(1). However, the space
complexity of the SVM with an RBF kernel is O(N).
Since the number of classifiers in the Jury stage increases
linearly with N , its space complexity is O(N) (when an
AdaBoost classifier or SVM classifier with a linear kernel
is used) or O(N2) (when the SVM classifier with the
RBF kernel is employed).

VII. USING BIOAURA FOR IDENTIFICATION

The majority of continuous authentication systems only
support continuous verification in which the user provides a
user ID and the system checks if the user is the person he
purports to be. In this section, we describe how CABA can be
slightly modified to also identify the user from a database
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of users by processing feature vector Y provided by the
smartphone. An identification scenario consists of four steps.
The first three steps are similar to the ones discussed in Section
V for continuous authentication. In the fourth step, CABA
processes the decisions of all classifiers in the Jury stage
to indicate that the user is not in the database, or conclude
that he is, in which case it returns his user ID. This step
can be implemented in different ways. In our implementation,
CABA processes all outputs of the Jury stage and outputs
the user ID if there is only one classifier whose output is
an accept decision. Otherwise, it indicates no match. Our
experimental results demonstrate that this scheme provides
the best result, for which the identification rate is 96.1%,
with the AdaBoost classification method with a tree size of
15 nodes. Identification rate is a commonly used metric for
this scenario [31]. It is defined as the percentage of attempts
correctly identified to the total number of attempts made.

VIII. REAL-TIME ADAPTIVE AUTHORIZATION

In this section, we first define the concept of authorization.
Then, we propose a real-time adaptive authorization (RAA)
scheme, which uses the decisions from CABA to provide an
extremely flexible access control model. The RAA concept is
not limited to CABA. It provides an adjustable access control
model for any authorization system that authorizes the user
based on decisions of a continuous authentication system.

Authorization is defined as the process of establishing if the
user, who has been already authenticated, should be allowed
access to a resource, system, or area [34].

Traditional authorization schemes grant a specific access
level to the authenticated user based on his user ID. However,
the fact that continuous authentication systems have a non-zero
FRR implies that such a simple scheme may unintentionally
block a legitimate access when the authentication system fails
to recognize a valid user for a short period of time. Consider a
scenario in which a continuous authentication system is used
to protect a personal laptop from unauthorized users. The
authentication system first authenticates the user. Then, the
authorization scheme specifies the user’s access level based on
the user ID. However, the laptop may log out the user when
the authentication scheme falsely rejects him. RAA schemes
can be used to alleviate user inconvenience caused by false
reject decisions. They continuously adjust the user’s access
level based on the last decision of the authentication system.
Next, we propose an RAA scheme that can be used with a
continuous authentication system.

A trust level-based RAA adaptively changes the user’s
access level based on a parameter called trust level (TRL).
TRL is a recently-suggested parameter that represents how
much we trust a user based on previous decisions of the con-
tinuous authentication system [35]. TRL has a value between
0 and 100, where a higher number indicates a higher level
of trust. The initial value of TRL is 100 when the user is
authenticated and authorized for the first time. The value of
TRL is continuously updated using a trust update procedure
after each user authentication. A simple trust update procedure
may be to just increase (decrease) the TRL by a constant step

after each accept (reject) decision. Trust update procedure
shows the pseudo-code for such an approach. We need to
set two parameters: WAccept and WReject. The values of
WAccept and WReject should be chosen such that the TRL
value becomes 0 as soon as we detect the presence of an
impostor and becomes 100 when we confidently verify that
the user is legitimate. Consider AdaBoost classification with a
tree size of 15 nodes that yields FRW = 3. This indicates that
the authentication system may falsely reject three consecutive
requests of a legitimate user in the worst case. Therefore, if
the RAA scheme gets at least four consecutive reject decisions
from the authentication system, it becomes confident that the
user is an impostor (TRL = 0). Hence, we can set WReject for
this classifier as follows: WReject =

−100
FRW+1 = −100

4 = −25.
FAW = 4 for the above-mentioned classification method,
which indicates that in the worst case, an impostor may be
falsely accepted as a legitimate user in four successive trials.
Therefore, if the authentication system outputs five consecutive
accept decisions, TRL should become 100. Thus, we can set
WAccept as follows: WAccept =

+100
FAW+1 = +100

5 = +20.
We can set different threshold values for different applica-

tions. We set the threshold value to 100 for accessing email
and financial accounts to ensure that the user can access
such accounts only when the system is confident that the
user is legitimate. However, for less sensitive applications,
e.g., simple web surfing, a lower level of trust might be
sufficient. Using CABA in conjunction with RAA can enhance
user convenience, while ensuring high security for critical
applications.
Trust update procedure

Given: The latest decision of the authentication system and
current TRL value

1. TRL← TRL+ FUpdate, where

FUpdate(decision) =

{
WAccept, if decision = Accept,

WReject, otherwise.

2. If (TRL > 100)

3. TRL← 100

4. end
5. If (TRL < 0)

6. TRL← 0

8. end
9. Return TRL

Output: TRL

IX. POTENTIAL THREATS AND COUNTERMEASURES

Next, we describe possible attacks/threats against CABA
that can be exploited by attackers to bypass CABA. For each
attack, we also suggest possible countermeasures.
1. Eavesdropping: This is defined as the act of covertly
listening to confidential conversations of others [36], which, in
our context, can be done by intercepting the communication
between two devices using an appropriate equipment, e.g.,
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HackRF [37]. Eavesdropping can occur when unencrypted
information is transmitted over an untrusted channel.
Countermeasures: The most effective and well-known de-
fense against eavesdropping is encryption. For example, the
transmitted message can be encrypted using Advanced En-
cryption Standard [38]. However, implementing a strong en-
cryption in WMSs may not be possible in the current state of
the technology since they have limited energy and memory ca-
pacity. Fortunately, eavesdropping does not pose a direct threat
to the authentication system. In other words, it is possible to
design the authentication system assuming that eavesdropping
does occur on the communication between the WMSs and the
smartphone. In this case, CABA would require that the data
be sent from a smartphone that is previously registered in the
system to ensure that the attacker is not able to capture the
biomedical information and send the captured information to
CABA using another smartphone. The smartphone can send its
unique ID over a secure communication link to CABA before
transmitting the biomedical information.
2. Phishing: This is an attack that attempts to fool the user
into submitting his confidential or private information, e.g.,
username, password, email address, and phone number, to
an untrusted server or device [39]. For example, the attacker
might attempt to fool the user’s smartphone by sending
a counterfeit request that asks the smartphone to send its
authentication-related information to the attacker’s server.
Countermeasures: The most effective way to address phish-
ing attacks is to use a digital certificate, i.e., an electronic
document that allows a device to exchange information se-
curely using the public key infrastructure [40]. The certificate
carries information about the key and its owner. In CABA, the
server’s digital certificate can be examined by the smartphone
to ensure that the server is trusted.
3. Replay attack: In a replay attack, an attacker records the
data, packets, and user’s credentials, which are transmitted
between two devices, e.g., a WMS and the smartphone, and ex-
ploits them for a malicious purpose. In a replay attack against
the authentication system, the attacker attempts to impersonate
a legitimate user in order to bypass the authentication proce-
dure and gain full access to the protected device, application,
or area. Unlike the attacks based on eavesdropping, in a replay
attack, the attacker does not need to interpret the packets. In
fact, he can even record encrypted packets and retransmit them
in order to bypass the system.
Countermeasures: An encrypted timestamp, i.e., a sequence
of encrypted information identifying when the transmission
occurred, can be utilized to enable the authentication system to
check that the packets were not previously recorded. Moreover,
the packet should include a field that contains the encrypted
information, e.g., a hashed device ID, which can be used in
the authentication system to uniquely specify the sender of the
packets and check if the sender is known and trusted.
4. Poisoning attack: In a poisoning attack, the attacker
changes the final learning model by adding precisely-selected
invalid data points to the training dataset [41]. In CABA, the
attacker might threaten the integrity of the machine learning
algorithm by using an untrusted WMS that aims to add
malicious data points to the training set.

Countermeasures: We describe two types of countermeasures
against poisoning attacks.

1. Outlier detection: One of the common goals of defenses
against poisoning attacks is to reduce the effect of invalid
data points on the final result. In a machine learning method,
such invalid data points are considered outliers in the training
dataset. Several countermeasures against poisoning attacks
have been discussed in [42].

2. Digitally-signed biomedical information: A digital signa-
ture can be used to check the authenticity of the information.
It is a mathematical method for demonstrating the authenticity
of a transmitted message. Thus, it provides the means to the
recipient to check if the message is created by a legitimate
sender. The WMSs and the smartphone can digitally sign the
biomedical information before transmitting it.

X. COMPARISON BETWEEN CABA AND
PREVIOUSLY-PROPOSED SYSTEMS

In this section, we first describe why previously-proposed
authentication systems based on biomedical signals (EEG and
ECG) may not be well-suited to continuous authentication.
Then, we compare CABA to three promising biometrics-
/behaviometrics-based continuous authentication systems.

The use of EEG [44] and ECG [45], [46] signals, as
biomedical traits with high discriminatory power for user
authentication, has received widespread attention in recent
years. Although such authentication systems show promising
results, they do not provide a convenient method for long-
term continuous user authentication for two reasons. First,
they commonly need long measurement times and impose
a heavy computational load on the system [47]. Second,
due to the size/position requirements of the electrodes that
enable EEG/ECG acquisition [23], [45], these systems can
mainly be used for one-time user authentication (or short-
term continuous authentication) systems. For example, the user
needs to wear a large cap to collect the data for EEG-based
authentication [44], which is not convenient for long-term
continuous authentication.

As mentioned in Section I, several biometrics-
/behaviometrics-based continuous authentication systems
have been proposed. Among them, facial recognition systems
[6], [13], [48], [49], which use facial features (as biometrics),
and keyboard-/mouse-based authentication systems [1], [8],
[16], [50]–[52], which rely on keystroke/mouse dynamics (as
behaviometrics), are the most promising.

Facial recognition systems make use of low-cost cameras
that are commonly built into most laptops. They are accurate
when the user looks straight at the webcam. However, their
performance is significantly affected by illumination, pose,
expression or changes in the image acquisition method [13].
Moreover, the user’s facial images is unavailable when the user
turns his head or does not look at the camera. Such systems
are also not useful for tablets and smartphones since the user
typically does not face a built-in camera in these cases.

Previous keyboard-/mouse-based authentication systems re-
port promising results and provide user authentication in a
convenient manner. However, they have four drawbacks that
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TABLE VI
COMPARISON OF DIFFERENT CONTINUOUS AUTHENTICATION SYSTEMS

System Passiveness Availability Accuracy Scalability Efficiency Low cost Stability Extensibility EER
Keyboard-based [31] + - + + + + + - 0.5% to 17.6%

Mouse-based [8] + - + + + + + - 2.5% to 26.8%

Facial recognition [43] + - + + + + + - 2.4% to 20.0%

CABA + + + + + + + + 1.9%

limit their applicability: (i) their performance is easily im-
pacted by environmental variables, such as changes in software
environments, input devices, task, or interaction modes [8],
[31], (ii) they can only be employed when system has a
keyboard/mouse, (iii) the data often become unavailable, e.g.,
when the user is watching a movie on his computer, and
(iv) keyboard-based systems need active involvement of the
user for long sessions, e.g., several minutes [16], to guarantee
acceptable accuracy, and mouse dynamics based systems have
still not reached an acceptable accuracy levels [8].

Unlike most continuous authentication systems that support
personal computers and laptops, CABA can be used to protect
personal computers, servers, software applications, and re-
stricted physical spaces. Moreover, WMSs ensure a continuous
data stream. This enables the user to freely move and change
his posture while being authenticated. In addition, unlike
previous systems, CABA can be implemented on any general-
purpose computing unit with sufficient memory capacity and
computation power. Table VI compares CABA to continuous
keyboard-based, mouse-based, and facial recognition systems.

XI. DISCUSSION

Here, we address three items not yet explained in detail.
First, we discuss an important privacy concern surrounding the
use of biomedical signals. Second, we describe how CABA
can also be used as a stand-alone one-time authentication
system. Third, we discuss the impact of temporal conditions
on authentication results.

A. Health information leakage

An important privacy concern associated with the use of
biomedical signals is the possibility of health information leak-
age. For example, an adversary might extract disease-specific
information from such signals, e.g., certain heart rate ranges
may be correlated with cardiovascular disease [53]. Exposure
of a serious illness or a condition that carries social stigma
would naturally raise serious privacy concerns [54]. However,
since CABA does not rely on high-precision measurements
(it only processes the average values of Biostreams over
specific time frames), the amount of health-related information
potentially leaked by CABA is less than leaked by EEG/ECG-
based approaches that rely on high-quality EEG/ECG signals.
Similar concerns have been discussed in previous research
efforts for both biometrics and behaviometrics, and usually
addressed by suggesting legislation [55].

B. One-time authentication based on BioAura

CABA can also be used as a stand-alone one-time authen-
tication system. We discuss several such scenarios next.

• Battery-powered devices: Incurring overheads of continu-
ous authentication on a battery-powered device may drain
its battery quickly, and lead to user inconvenience.

• Low-security environment: Continuous authentication
may not be required in a low-security environment, e.g.,
a common room in an apartment.

• Intentionally-shared resources: A user might want to
intentionally authorize a group of users to access some
specific locations or resources. For example, consider a
user who uses a smart lock, which grants access to him
when he approaches the door of his house. He may want
to open the door for his guests and leave the house.

Generally, a continuous authentication system that has high ac-
curacy and a short response time may be able to provide stand-
alone one-time authentication or complement a traditional
authentication system (whose decision is only considered at
the time of initial login). As discussed in Section VI, CABA
provides an accurate decision within a few milliseconds and,
hence, is also useful for one-time authentication.

C. The impact of temporal conditions

The negative impact of temporal conditions, e.g., emo-
tional/physical conditions and changes in posture, gesture or
facial expressions, on widely-used biometrics-/behaviometrics-
based systems have been discussed earlier [56]. Similarly,
some biomedical signals may change significantly due to
a change in physical activity. This may negatively impact
authentication accuracy. For example, when the user suddenly
starts running, his blood pressure, heart rate, and respiration
rate increase. Therefore, if the authentication system has only
been trained using data collected when the user was at rest,
it might fail to authenticate the user after he finishes running.
A solution would be to design a state-aware system that takes
different emotional states and physical activities into account.
Algorithms exist for recognizing emotional states [57] and the
type [58] and intensity [59] of physical activities using WMSs.
Such algorithms can be used in conjunction with CABA.

XII. CONCLUSION

In this paper, we proposed CABA, a novel user-transparent
system for continuous authentication based on information that
is already gathered by WMSs for diagnostic and therapeutic
purposes. We described a prototype implementation of CABA
and comprehensively investigated its accuracy and scalability.
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We also described how CABA can be used to support user
identification. We then presented an RAA scheme that uses
the decisions from CABA to enable flexible access control.
We compared CABA to previously-proposed continuous au-
thentication systems (biometrics- and behaviometrics-based),
and highlighted its advantages. We discussed several attacks
against the proposed authentication system along with their
countermeasures. Finally, we briefly described an privacy con-
cerns surrounding the use of biomedical signals, how CABA
can also be used for one-time authentication, and impact of
temporal conditions on authentication.
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