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Abstract—Information security has become an important con-
cern in healthcare systems, owing to the increasing prevalence
of medical devices and the growing use of wearable and mobile
computing platforms for health and lifestyle monitoring. Previous
work in the area of health information security has largely
focused on attacks on the wireless communication channel of
medical devices, or on health data stored in online databases.

In this work, we pursue an entirely different angle to health
information security, motivated by the insight that the human
body itself is a rich source (acoustic, visual, and electromagnetic)
of data. We propose a new class of information security attacks
that exploit physiological information leakage, i.e., various forms
of information that naturally leak from the human body, to
compromise privacy. As an example, we demonstrate attacks that
exploit acoustic leakage from the heart and lungs.

Next, the medical devices deployed within or on our bodies
also add to natural sources of physiological information leakage,
thereby increasing opportunities for attackers. Unlike previous
attacks on medical devices, which target the wireless commu-
nication to/from them, we propose privacy attacks that exploit
information leaked by the very operation of these devices. As
an example, we demonstrate how the acoustic leakage from
an insulin pump can reveal important information about its
operation, such as the duration and dosage of insulin injection.
Moreover, we show how an adversary can estimate blood pressure
(BP) by capturing and processing the electromagnetic radiation
of an ambulatory BP monitoring device.

Index Terms—Healthcare, information leakage, information
security, medical devices, privacy.

I. INTRODUCTION

Implantable and wearable medical devices (IWMDs)

promise to transform healthcare, by enabling diagnosis, mon-

itoring, and therapy for a wide range of medical conditions

and by facilitating improved and healthier lifestyles. Rapid

advances in electronic devices are revolutionizing the capa-

bilities of IWMDs [1]. New generations of IWMDs feature

increased functional complexity, programmability, and wire-

less connectivity to body-area networks (BANs). Standardized

communication protocols, such as Bluetooth [2] and ZigBee
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[3], are opening up new opportunities for providing low-power

and reliable communication to IWMDs. These features facil-

itate convenient collection of medical data and personalized

tuning of therapy through communication between different

IWMDs and an external device (e.g., smartphone or clinical

diagnostic equipment).

Advances in IWMDs have, unfortunately, also greatly in-

creased the possibility of security attacks against them. Many

recent research efforts have addressed the possibility of ex-

ploiting the wireless communication of IWMDs to compro-

mise patients’ privacy, or to send malicious commands that

can cause unintended behavior. For example, Halperin et al.

showed that the unencrypted wireless channel of a pacemaker

can be exploited to compromise the confidentiality of data or

to send unauthorized commands that cause the pacemaker to

deliver therapy even when it was not needed [4]. Subsequently,

a successful attack on an insulin pump, exploiting the wireless

channel between the device and remote controller, was shown

in [5]. By reverse-engineering the customized radio commu-

nication and interpreting the unencrypted packets sent from a

remote controller to an insulin pump, the attacker can launch

radio attacks to inject insulin into the patient’s body beyond

the dosage regimen. Finally, attacks that drain the battery of

IWMDs by sending packets that fail authentication have also

been proposed [4].

In this article, we demonstrate that medical privacy con-

cerns extend far beyond the wireless communication to/from

IWMDs. We make two main contributions. First, we describe

the possibility of privacy attacks that target physiological infor-

mation leakage, i.e., signals that are continuously emanating

from the human body due to the normal functioning of its

organs. These attacks are a concern even when there is no

medical device present, and hence have a much wider scope.

As our second contribution, we target IWMDs. We propose

several novel attacks on privacy by leveraging information

leaked from them during their normal operation. We demon-

strate attacks on two medical devices based on acoustic

and electromagnetic (EM) leakage from them. Moreover, we

investigate a novel metadata-based attack that extracts critical

health-related information by monitoring the communication

channel, although the data may be completely encrypted.

We note that the proposed attacks are applicable even when

medical devices have no wireless communication, or when the

wireless communication is encrypted, unlike previous attacks

that compromise unencrypted wireless channels [4], [5].

The rest of the article is organized as follows. Section II

describes the threat model. Section III discusses the sources

https://mc.manuscriptcentral.com/tetc-cs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper can be cited as: A. Mohsen Nia and N. K. Jha, "Physiological information leakage: A new 
frontier in health information security," in IEEE Trans. Emerging Topics in Computing, vol. 4, no. 3, pp. 

321-334, 2016
The latest version of this manuscript is available on http://ieeexplore.ieee.org/document/7273876/



For Peer Review
 O

nly

2

and various types of physiological information leakage. Sec-

tion IV presents our bevy of proposed privacy attacks. Section

V suggests some countermeasures against the attacks, and

Section VI concludes the paper.

II. THREAT MODEL

In this section, we first describe potential adversaries. Then,

we describe potential risks that may arise from loss of privacy.

A. Adversary

We consider an adversary to be any potentially untrusted

person who has a short-term physical proximity to the patient.

The proposed attacks, while not impossible, may be difficult

to deploy in a secure location such as the patient’s home

or a medical facility such as a hospital. However, none of

our attacks require access to specialized medical equipment

such as the ones used in hospitals. We also assume that

long-term physical access to the patient or monitoring of the

patient, e.g., using a camera that continuously monitors the

subject’s activities, is not feasible. In our attack scenarios, the

adversary gains the required physical access to the patient in

any public location. Crowded places, such as train stations,

bus stops, and shopping malls, may provide opportunities

for the adversary to come closer to the subject, while hiding

the required equipment. A potential adversary might be an

employer who intends to discriminate against a chronically-ill

patient, a private investigator who has been hired to spy on

the subject, a political operative who wants to expose the

medical condition of the subject for political advantage or a

criminal group seeking to sell valuable medical information

to the highest bidder [6].

B. Potential Risks

The patient’s physiological signals may be exploited in

various ways. We describe some of the consequences of such

information leakage next.

• Job/insurance loss: Revelation of medical conditions

may negatively impact a person’s employment prospects

or make it more difficult for him to obtain insurance.

Leakage of this sensitive information from the human

body or IWMDs, such as the presence of a serious illness,

level of the illness, exposure of a condition that may

carry social stigma, and exposure of physical, emotional

or mental conditions would naturally raise serious privacy

concerns.

• Unauthorized interviews: An unauthorized interviewer

may be able to combine lie detection (also called de-

ception detection) questioning methods with the privacy

attack techniques proposed in this work to ascertain the

truth or falsehood of responses given by the subject,

without his consent. Several researchers have investigated

variations in vital health signals, such as the respiratory

rate and heart rate, in the presence of acute emotional

stress (e.g., when the person is lying) or a mental problem

[7]–[9]. For instance, Sung et al. have demonstrated

changes in the heart and respiratory rates in live poker

game scenarios [10].

• Indirect consequences: Although disclosure of medical

information using the proposed privacy attacks might not

be directly lethal, unlike attacks on the integrity of the

medical device [4], [5], it may lead to a subsequent

tailored integrity attack. For instance, as described later,

extracting medical device information, model, type, and

configuration using EM leakage from the device may pro-

vide enough information to an adversary to design a more

effective integrity attack using the extracted parameters.

Moreover, detection of usage of certain medical devices

by adversaries may endanger the safety of the patient,

e.g., if the device is very expensive and attracts theft, or

embarrass the subject if the medical condition carries a

social stigma [6].

III. INFORMATION LEAKAGE

In this section, we first discuss the possible sources

of information leakage, followed by brief descriptions of

different types of signal leakages addressed in this paper.

A. Leakage sources

In this work, we consider two sources of information

leakage: (i) human body and (ii) IWMDs. Each source con-

tinuously leaks information through different types of signals.

Several organs in our body generate biomedical signals.

Some of these signals can be remotely captured and analyzed.

For example, our lungs generate an acoustic wave called

respiration sound, which can be captured by a microphone.

In addition to body organs, IWMDs may also reveal

critical health information under normal operation even when

not using any wireless communication to transmit data. For

example, the electrical motor of an insulin pump generates

an acoustic signal when injecting insulin. As described later

in Section IV, performing simple signal processing on this

acoustic signal can reveal the prescribed insulin dose.

B. Leakage types

In general, leaked physiological signals can be divided

into two types: (i) acoustic and (ii) EM signals. Fig. 1

demonstrates the sources of leakage, as well as the different

types of signals that we consider in this work. Body organs,

such as heart and lungs, produce an acoustic signal that can

be captured remotely and analyzed. IWMDs, such as an

insulin pump or BP monitor, may also generate acoustic and

EM signals during their normal operation even if they are

not transmitting any data. The following subsections describe

these signals in detail.

B.1 Body-related information

The human body consists of several continuously-operating

organs. Various acoustic and EM signals are generated as
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Fig. 3. Receiver set-up used for the displacement-based laser microphone.

For obtaining the heart and respiration rates, we use a simple

algorithm to find the local maxima. In order to reduce the

effect of noise, the algorithm ensures that the distance between

two consecutive peaks is more than the value of a parameter

called distanceThreshold. The maximum possible human

heart rate (200 pulse per minute) and respiration rate (80

breaths per minute) are used to define distanceThreshold.

Thus, distanceThreshold is set to 5ms and 12.5ms for the

heart and respiration rates, respectively.

In Method 1, we use the laser-displacement microphone

for capturing acoustic signals from both the lungs and heart.

The sound quality obtained by this microphone depends on

two factors: (a) reflection fraction, which is the fraction of

the incident beam that is reflected by the surface, and (b)

the displacement of the received beam. The first parameter

depends on the nature of the surface. For example, the human

skin absorbs a large fraction of the incident beam; therefore,

the sensor should be placed close to the skin to receive the

beam. However, the displacement of the received beam on

the sensor decreases as the sensor gets nearer the reflecting

surface. We were able to accurately extract the respiration

rate from 5 cm away. If the person wears a metallic/reflecting

necklace, we can point the incident beam towards the necklace

instead, which is a better reflector than the human skin. We

were able to accurately extract the respiration rate from 6 m

away when the person wore a flat steel necklace. We also used

a displacement-based laser microphone to detect the heart rate.

In the absence of an attached reflector surface, the acoustic

signal was used by the laser microphone to detect the heart

rate with over 95% accuracy at a distance of 5 cm. At greater

distances, the amount of received beam reduces drastically and

the accuracy drops.

The audio gain of a parabolic microphone increases as

the frequency increases. The gain of an ideal 20-inch dish

with a perfect parabolic shape and focus is characterized

by a curve starting from 0 dB at 200 Hz. In order to

enhance the amplification of our parabolic microphone, we

replaced its dish with a larger 1 m dish that provides a 6

dB amplification at 200 Hz. At lower frequencies, the most

important parameters are dish size and the quality of the

microphone. The modified parabolic microphone was able to

detect the respiration rate at a distance of 5 m. However, the

parabolic microphone was unable to detect the heart rate.

B. Acoustic signal based IWMD-related attacks

Acoustic signals generated unintentionally by an IWMD

can provide valuable information to an unauthorized party.

Each IWMD consists of different components. Some of these

components (e.g., electrical motors and relays) can produce a

capturable sound during normal operation. An unintentionally-

generated acoustic signal can be used as a side-channel

information to reveal the status of the medical device and

the patient’s condition. In addition to this class of acoustic

signals, some IWMDs intentionally produce acoustic signals to

notify the users of conditions that require immediate attention.

Many medical devices have alarm systems; among them are

insulin pumps, pulse oximetry devices, and BP monitors.

These alarms offer necessary warnings to inform patients

of changes in their health condition. They usually provide

sophisticated mechanisms for safety checks. These alarms

make the patient aware of an unusual situation. Generally,

the audible frequency range for a human is between 20 Hz

and 20 kHz. Frequency ranges of 2 kHz to 4 kHz are most

easily heard. For this reason, most alarms emit sound in this

frequency range.

Several sound-recording equipments are available on the

market, ranging from simple microphones to sophisticated

parabolic microphones. In the following subsections, we

describe two different attacks using acoustic signals. In the

first attack, we capture and amplify the sound of an electrical

motor using a parabolic microphone. In the second attack,

we use a simple microphone to record the required acoustic

signal. We were able to accurately determine the amount

of injected insulin from 1 m and 10 m away for the first

and second attacks, respectively. Using a more powerful

microphone or amplifier will obviously increase this range.

B.1 Acoustic leakage from an insulin delivery system

We now describe how acoustic signals leaking from an

insulin delivery system can reveal the patient’s health con-

dition. Fig. 4 shows a schematic view of an insulin pump.

The display screen allows the user to set the value of different

device parameters. The controller controls the motor, which

pushes the piston rod forward to release a prescribed amount

of insulin. In this medical device, the electrical motor uninten-

tionally generates acoustic signals and the speaker intention-

ally produces different alarms as reminders for calibration and

high/low glucose, and as predictive high/low glucose alerts.

The components marked in red (motor and buzzer) generate

the acoustic signals that we can interpret to reveal the medical

data.

Here, we present two attacks on an insulin pump using

these acoustic signals. First, we demonstrate how capturing

and interpreting the unintentional acoustic signal generated
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Fig. 5. Dose of injected insulin vs. the number of rotation steps of the
electrical motor.
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Fig. 6. Acoustic signal generated by the electrical motor of an insulin pump
while injecting 0.8 unit of insulin.

injection of 0.2 and 0.4 unit of insulin takes about 7 and 14

seconds, respectively. Fig. 7 shows the amount of injected

insulin with respect to injection duration. It shows there is

an almost-linear relationship between the amount of injected

insulin and injection duration. Therefore, if the attacker can

only estimate the injection duration by calculating the time

during which the sound of the electrical motor is present, he

can find the exact amount of injected insulin even when a large

fraction of the acoustic signal is dominated by background

noise and counting the total number of steps is not feasible

(Fig. 8). Using the test set described earlier, our duration-based

algorithm was able to extract the exact amount of insulin in

18 of the 20 cases (10 under low-noise signals and 8 under

noisy signals). Similar to the previous method, this algorithm

was also able to automatically detect the situations in which

the presence of noise affects the computed results.

In summary, capturing and processing the acoustic signal

generated by the electrical motor of an insulin pump may

reveal the injected dosage, and as a result, reveal the medical

condition of the patient. The medical literature suggests that

one unit of insulin is required per 50 mg/dl above 120 mg/dl

of blood sugar [22]. Therefore, after measuring the insulin

dosage, we can also estimate the level of blood sugar before

injection.

Injected dose ! 0.2 * (Duration of Injection / 7) 

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

Duration of injection (s)

In
je

ct
ed

 d
o

se
 (

u
n

it
)

Fig. 7. Dose of injected insulin vs. injection duration.
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Fig. 8. Acoustic signal generated by the electrical motor of an insulin pump
when 0.8 unit of insulin is injected. For a large fraction of time, the acoustic
signal is dominated by background noise, and counting the number of rotation
steps is not feasible.

B.1.2 Eavesdropping on alarms of an insulin pump

We describe below how the safety system of an insulin

pump, which intentionally generates acoustic signals to inform

patients, can unintentionally leak critical information about the

health condition of a patient. As mentioned earlier, alarms

are intended to alert patients of special events. The controller

unit of the insulin pump (Fig. 4) is responsible for handling

alerts and alarms, and the speaker generates audible signals in

various situations, including blockage, low/high sugar level,

initialization, and end of an injection.

Each injection procedure has four different phases: (i)

initialization, (ii) confirmation, (iii) injection, and (iv) end of

injection. Fig. 9 shows the acoustic signal generated by the

alarm system of an insulin pump when a user tries to inject

0.8 unit of insulin. The four phases of the injection procedure

are demonstrated in this figure. After the patient sends the

injection command, the beginning of the initialization phase is

reported by a single beep sound. Then, the user sets the dosage.

In the confirmation phase, multiple beeps are generated based

on the desired dosage. In this phase, one beep is generated by

the safety system for every increment of 0.2 unit in insulin

dose. However, the frequency of beeps in this phase is 2×

higher than that in the initialization phase. Next, the injection
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Fig. 11. Acoustic signal generated by the ambulatory BP monitoring device.
Three phases of measurement are shown.

we found that the systolic BP was detected after three or four

steps in the step-wise deflation phase, which suggests that the

systolic BP should be in the range of (Ph − 27) mm Hg to

(Ph − 36) mm Hg, where Ph is the maximum cuff pressure

in the inflation phase. Moreover, based on our experimental

results, the diastolic pressure is usually detected in the range of

Pl mm Hg to (Pl+9) mm Hg, where Pl is the minimum cuff

pressure during the step-wise deflation phase before the device

enters the restart phase. In order to examine the accuracy of

the above claim, we used 25 BP measurements. The systolic

BP was in the range of (Ph − 27) mm Hg to (Ph − 36) mm

Hg for 21 out of 25 measurements. Moreover, for 23 out of

25 measurements, the diastolic BP was in the range of Pl mm

Hg to (Pl+9) mm Hg. Therefore, if we can develop a method

to detect Ph and Pl, the systolic and diastolic pressure can be

estimated as (Ph−27+Ph−36)/2 mm Hg and (Pl+Pl+9)/2
mm Hg, respectively.

Next, we describe how we can use the acoustic signal

generated by the electrical pump to extract Ph and Pl and

thus estimate the BP. The cuff pressure reaches its maximum

value at the end of the inflation phase. In order to find the

maximum value for an arbitrary measurement, we construct

a look-up table that maps the maximum pressure (Ph) to

the duration of inflation (Th), where Ph varies from 100

mm Hg to 180 mm Hg. For each measurement, we first

calculate Th by finding the part of the acoustic signal in

which the pumping sound is present. Then, we use the

look-up table to find Ph. Thereafter, we count the number

of steps before deflation. Then, we calculate the range of

systolic and diastolic pressures, and report the middle points

of these ranges as their estimate. Our experimental results

show that for 19 out of 25 arbitrary measurements, this

algorithm calculates both systolic and diastolic pressures with

absolute error less than 8%, where error is defined as the

difference between the estimated and actual values divided

by the actual value. The main reason for the six failed

cases was re-inflation. Re-inflation occurs when the patient

suddenly changes his arm position during the step-wise

deflation phase. In this case, the monitoring device increases

the cuff pressure again. It is easy to modify the method to

detect the situation in which re-inflation occurs. Algorithm

AmbBP gives the pseudo-code for the improved version of

our algorithm. We define a function, called infCount, which

finds the number of inflation phases separated by deflation

steps. This improved algorithm automatically detects whether

the algorithm is unable to calculate the BP accurately.

Algorithm AmbBP. Estimating systolic and diastolic BP by

processing the acoustic signal from an ambulatory BP monitor

Given: acousticSignal, table where table : Th → Ph

1. infNumber ← infCount(acousticSignal)
2. if(InfNumber > 1)
3. Print “ Warning: Inaccurate ”

4. return− 1
5. end
6. Th ← calculateT imeOfInflation(acousticSignal)
7. Ph ← lookUp(Th, table)
8. Steps← CountPeaks(acousticSignal)
9. upperSystolic← Ph − 27
10. lowerSystolic← Ph − 36
11. Pl ← Ph − numberOfSteps ∗ 9
12. upperDiastolic← Pl

13. lowerDiastolic← Pl + 9
14. systolic← upperSystolic+lowerSystolic

2

15. diastolic← upperDiastolic+lowerDiastolic
2

16. Print diastolic, systolic
17. return 0

Output: diastolic, systolic, or the warning message

Return status: 0 (accurate) or -1 (inaccurate)

C. EM radiation based IWMD-related attacks

We target two classes of EM radiations: (i) unintentional

EM radiations that are signals generated by different

components of an IWMD (e.g., processor, controller), and

(ii) intentional EM radiations that are encrypted wireless

communications that transmit medical data. Next, we discuss

two EM radiation based attacks using each class of EM

radiations, namely from the pump in a BP monitor, and based

on the metadata of wireless communications of an insulin

pump.

C.1 Estimating BP from unintentional EM radiations

Next, we discuss an attack based on capturing and

analyzing the EM radiation that is unintentionally generated

by the BP monitoring device.

C.1.1 Capturing unintentional EM signals

We use an oscilloscope (MSO/DPO5000) to detect the EM

signals. The EM side-channel information that we capture is

available during the normal operation of the medical device
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even when the device is not transmitting any data (e.g., using

a USB cable or wireless communication). We capture the raw

EM signal directly from the antenna that is connected to the

oscilloscope, instead of a filtered and demodulated signal with

limited bandwidth. We use an antenna (75 Ohms VHA 9103

Dipol Balun) to improve the SNR for signals in the 25 MHz

to 500 MHz frequency band. Moreover, we check if these EM

signals can be captured using a small portable antenna, such

as a simple loop of 0.5-meter copper wire.

EM signals may remain undetected using standard

techniques. Spectral analyzers need significantly static

carrier signals. The demodulation process may eliminate the

interesting components of unintentionally-emitted EM signals.

In addition, the scanning process of wide-band receivers may

take a lot of time [23].

C.1.2 Processing the captured EM signals

Using the EM signals captured from the BP monitoring

device, we were able to estimate the patient’s BP. EM

radiations reveal the activity of the electrical pump in the

different phases of a measurement (inflation, step-wise

deflation, and restart). The duration of the inflation phase can

be revealed by calculating the time when the electrical motor

produces the EM radiations, and as a result, the systolic BP

can be extracted by using the method discussed earlier for

extracting systolic BP from acoustic signals. Moreover, by

monitoring the activity of the device in the deflation phase,

the number of deflation steps could be detected. Estimating

the BP using EM signals was as accurate as when it was

estimated from acoustic signals. However, this method can

be easily used in a crowded environment, where the acoustic

signal may be dominated by background noise. The activity

of the electrical pump in the inflation phase was completely

detectable from 15 cm away when we used the VHA antenna.

Moreover, when we replaced the VHA antenna with a 0.5 m

wire, we were able to detect the activity from 10 cm away.

The deflation steps were detectable using the VHA antenna

and wire from 10 cm and 5 cm away, respectively.

C.2 Extracting insulin dosage regimen from the wireless

communication metadata of the insulin pump

Next, we describe how capturing and processing the

metadata leaked from the communication channel of an

insulin pump can reveal critical medical information,

including the injected dose of insulin, number of injections,

and level of diabetes.

C.2.1 Capturing the metadata of wireless communication

In order to monitor fully-encrypted wireless communication

and extract the metadata from the communication channel, we

first need to find the frequency band of the transmission. If

the model and type of the device are known, the frequency

range can be extracted from manufacturer’s documentation.

In general, an IWMD should make its existence and type

unknown to unauthorized parties. If a device reveals its ex-

istence, its type should still remain hidden to unauthorized

persons. This may be for many different reasons. For example,

the device might be extremely expensive. More importantly,

knowing the specific model of a device may provide critical

information to potential adversaries. As we elaborate later, if

the type, characteristics, and settings of an IWMD are known,

designing a tailored attack becomes much easier. A tailored

attack is a smart attack based on the specific features and

configurations of a known device. Therefore, we assume that

the model and type of the IWMD are not known to the attacker.

A fast approach for detecting the frequency band of a

wireless transmission is through an oscilloscope that uses

a loop of wire as an antenna. The eavesdropper can scan

different frequency ranges when the communication channel

is active and guess the frequency range. In addition, the

frequency band of communication for an unknown IWMD can

usually be obtained by scanning some specific bands based

on the fact that FDA regulations impose specific limits on the

frequency bands of medical devices. The majority of medical

devices communicate at 450 MHz, 600 MHz, 900 MHz, 1.4

GHz, and 2.4 GHz.

After finding the frequency band of transmission, the

encrypted packets can be captured using one or multiple

universal software radio peripherals (USRPs) [24]. Next,

we demonstrate how examining the frequency band of the

channel and characteristics of the packets can reveal critical

health information.

C.2.2 Processing the captured EM signals

Different manufacturers have different priorities and con-

siderations. Thus, design priorities of IWMDs vary from one

device to another. As a result, the metadata of the commu-

nication channel of one device are different from those of

others. The metadata-based attack that we discuss next consists

of two main steps: (i) the eavesdropper first extracts the

metadata from the communication channel to reveal valuable

information about the type and model of the IWMD, and

(ii) when the device type is known, the attacker designs a

tailored attack that specifically targets the known device. We

discuss six classes of metadata leaked from the communication

channel that can be used to find valuable information about the

device: (i) frequency of communication, (ii) time between two

consecutive transmissions, (iii) communication protocol, (iv)

packet size, (v) detection range, and (vi) modulation protocol.

However, in most cases, a subset of these classes can uniquely

identify the model and type of the device.

We describe this attack using the insulin pump delivery

system. For the insulin pump we used in this research, the

frequency of communication (around 900 MHz), time between

two packets (5 minutes), and modulation protocol (on-off

keying) would be conclusive enough for an adversary to

uniquely identify the insulin pump and its manufacturer. In

addition, the detection range (20 m) and packet size (80

bits) match the information given in the documentation of the

device.

Next, we describe a tailored attack against a known insulin
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pump. We assume all communications are fully encrypted.

In the first step of the metadata-based attack, we find the

model and type of the insulin pump. This specific model

comes with a remote control. The remote control is a device

that controls and programs the insulin pump and allows the

user to deliver a discrete bolus dose or stop/resume insulin

delivery. Each button on the remote control sends a specific

command to the insulin pump. The size of remote control

is usually small to assure patient’s convenience, and as a

result, there are only a few buttons on the remote control.

Different sequences of buttons on the insulin pump are to

be pressed in different situations. For the insulin pump that

we monitored in our experiment, the patient should use at

least three button presses to start the injection: (i) the first

button tells the device to initialize the injection, (ii) the second

button is used to set the dosage of injection, and (iii) the

third button confirms the injection. The patient can press the

second button multiple times to increase the dosage. In this

scenario, interpreting the number of consecutive packets can

uniquely reveal the occurrence of the injection, and the insulin

dosage. For example, if seven packets are captured by the

USRP in this case, the first and last packets would represent

initialization and confirmation. Thus, the other five packets

can be assumed to be sent to increase the amount of injected

insulin. Therefore, monitoring the transmission channel, even

when it is fully encrypted and packets do not carry any

meaning to the attacker, can reveal the prescribed dosage of

insulin. Moreover, the number of injections can be extracted

by counting the number of transmissions that include more

than three packets.

V. POSSIBLE COUNTERMEASURES

In this section, we briefly discuss some possible counter-

measures to protect the patient against the privacy attacks

described in this article. We hope these initial suggestions

would spur further research on countermeasures against such

attacks. We discuss different countermeasures for each source

of leaked signals (human body and IWMDs).

Hiding information that leaks from the body is difficult

because there are many local sources of leakage, e.g., lungs,

heart, and skin. We can hide some of this information using

cloth as a shield. However, since it is typically not possible

to cover the whole body, medical information may at least

leak from the face. For example, the EM radiation from the

face leaks enough information to detect if a person has fever.

Moreover, many components inside medical devices may gen-

erate acoustic or EM signals: the motherboard, communication

cables, processor, and actuators. The simplest solution for

eliminating the leakage of compromising information from

IWMDs is use of a shield. However, incorporating a shield

will increase the IWMD price and thus may not be desirable

from a cost perspective. Another solution could be to analyze

the local sources of leakage (e.g., motherboard, wires, and

display board) during the manufacturing process, and add extra

components to generate noise with specific characteristics

so as to hide the information leakage. This approach also

increases the cost of manufacture. Moreover, adding a noise

generator may increase the energy consumption of the device

and thus reduce its battery lifetime. Such masking techniques

have been explored in the context of traditional side-channel

attacks on cryptographic systems.

VI. CONCLUSION

In this paper, we discussed two sources, namely the human

body and IWMDs, that continuously leak health information

under normal operation. We targeted two types of signals for

each source: acoustic and EM. We then described a variety of

attacks on the privacy of health data by capturing and pro-

cessing unintentionally-generated leaked signals. Moreover,

we discussed the feasibility of using intentionally-generated

acoustic signals (as a side-channel information) and EM

signals (as a carrier of metadata) to compromise the patient’s

health privacy. Finally, we suggested some countermeasures.
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