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Abstract—Information security has become an important con-
cern in healthcare systems, owing to the increasing prevalence
of medical devices and the growing use of wearable and mobile
computing platforms for health and lifestyle monitoring. Previous
work in the area of health information security has largely
focused on attacks on the wireless communication channel of
medical devices, or on health data stored in online databases.

In this work, we pursue an entirely different angle to health
information security, motivated by the insight that the human
body itself is a rich source (acoustic, visual, and electromagnetic)
of data. We propose a new class of information security attacks
that exploit physiological information leakage, i.e., various forms
of information that naturally leak from the human body, to
compromise privacy. As an example, we demonstrate attacks that
exploit acoustic leakage from the heart and lungs.

Next, the medical devices deployed within or on our bodies
also add to natural sources of physiological information leakage,
thereby increasing opportunities for attackers. Unlike previous
attacks on medical devices, which target the wireless commu-
nication to/from them, we propose privacy attacks that exploit
information leaked by the very operation of these devices. As
an example, we demonstrate how the acoustic leakage from
an insulin pump can reveal important information about its
operation, such as the duration and dosage of insulin injection.
Moreover, we show how an adversary can estimate blood pressure
(BP) by capturing and processing the electromagnetic radiation
of an ambulatory BP monitoring device.

Index Terms—Healthcare, information leakage, information
security, medical devices, privacy.

I. INTRODUCTION

Implantable and wearable medical devices (IWMDs)
promise to transform healthcare, by enabling diagnosis, mon-
itoring, and therapy for a wide range of medical conditions
and by facilitating improved and healthier lifestyles. Rapid
advances in electronic devices are revolutionizing the capa-
bilities of IWMDs [1]. New generations of IWMDs feature
increased functional complexity, programmability, and wire-
less connectivity to body-area networks (BANs). Standardized
communication protocols, such as Bluetooth [2] and ZigBee

Acknowledgments: This work was supported by NSF under Grant no. CNS-
1219570.

Arsalan Mohsen Nia is with the Department of Electrical Engi-
neering, Princeton University, Princeton, NJ 08544, USA (e-mail: ar-
salan@princeton.edu).

Susmita Sur-Kolay is with the Advanced Computing and Microelec-
tronics Unit, Indian Statistical Institute, Kolkata 700108, India (e-mail:
ssk@isical.ac.in).

Anand Raghunathan is with the School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907, USA (e-mail:
raghunathan @purdue.edu).

Niraj K. Jha is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544, USA (e-mail: jha@princeton.edu).

[3], are opening up new opportunities for providing low-power
and reliable communication to IWMDs. These features facil-
itate convenient collection of medical data and personalized
tuning of therapy through communication between different
IWMDs and an external device (e.g., smartphone or clinical
diagnostic equipment).

Advances in IWMDs have, unfortunately, also greatly in-
creased the possibility of security attacks against them. Many
recent research efforts have addressed the possibility of ex-
ploiting the wireless communication of IWMDs to compro-
mise patients’ privacy, or to send malicious commands that
can cause unintended behavior. For example, Halperin et al.
showed that the unencrypted wireless channel of a pacemaker
can be exploited to compromise the confidentiality of data or
to send unauthorized commands that cause the pacemaker to
deliver therapy even when it was not needed [4]. Subsequently,
a successful attack on an insulin pump, exploiting the wireless
channel between the device and remote controller, was shown
in [5]. By reverse-engineering the customized radio commu-
nication and interpreting the unencrypted packets sent from a
remote controller to an insulin pump, the attacker can launch
radio attacks to inject insulin into the patient’s body beyond
the dosage regimen. Finally, attacks that drain the battery of
IWMDs by sending packets that fail authentication have also
been proposed [4].

In this article, we demonstrate that medical privacy con-
cerns extend far beyond the wireless communication to/from
IWMDs. We make two main contributions. First, we describe
the possibility of privacy attacks that target physiological infor-
mation leakage, i.e., signals that are continuously emanating
from the human body due to the normal functioning of its
organs. These attacks are a concern even when there is no
medical device present, and hence have a much wider scope.

As our second contribution, we target IWMDs. We propose
several novel attacks on privacy by leveraging information
leaked from them during their normal operation. We demon-
strate attacks on two medical devices based on acoustic
and electromagnetic (EM) leakage from them. Moreover, we
investigate a novel metadata-based attack that extracts critical
health-related information by monitoring the communication
channel, although the data may be completely encrypted.
We note that the proposed attacks are applicable even when
medical devices have no wireless communication, or when the
wireless communication is encrypted, unlike previous attacks
that compromise unencrypted wireless channels [4], [S].

The rest of the article is organized as follows. Section II
describes the threat model. Section III discusses the sources
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and various types of physiological information leakage. Sec-
tion IV presents our bevy of proposed privacy attacks. Section
V suggests some countermeasures against the attacks, and
Section VI concludes the paper.

II. THREAT MODEL

In this section, we first describe potential adversaries. Then,
we describe potential risks that may arise from loss of privacy.

A. Adversary

We consider an adversary to be any potentially untrusted
person who has a short-term physical proximity to the patient.
The proposed attacks, while not impossible, may be difficult
to deploy in a secure location such as the patient’s home
or a medical facility such as a hospital. However, none of
our attacks require access to specialized medical equipment
such as the ones used in hospitals. We also assume that
long-term physical access to the patient or monitoring of the
patient, e.g., using a camera that continuously monitors the
subject’s activities, is not feasible. In our attack scenarios, the
adversary gains the required physical access to the patient in
any public location. Crowded places, such as train stations,
bus stops, and shopping malls, may provide opportunities
for the adversary to come closer to the subject, while hiding
the required equipment. A potential adversary might be an
employer who intends to discriminate against a chronically-ill
patient, a private investigator who has been hired to spy on
the subject, a political operative who wants to expose the
medical condition of the subject for political advantage or a
criminal group seeking to sell valuable medical information
to the highest bidder [6].

B. Potential Risks

The patient’s physiological signals may be exploited in
various ways. We describe some of the consequences of such
information leakage next.

o Job/insurance loss: Revelation of medical conditions
may negatively impact a person’s employment prospects
or make it more difficult for him to obtain insurance.
Leakage of this sensitive information from the human
body or IWMDs, such as the presence of a serious illness,
level of the illness, exposure of a condition that may
carry social stigma, and exposure of physical, emotional
or mental conditions would naturally raise serious privacy
concerns.

o Unauthorized interviews: An unauthorized interviewer
may be able to combine lie detection (also called de-
ception detection) questioning methods with the privacy
attack techniques proposed in this work to ascertain the
truth or falsehood of responses given by the subject,
without his consent. Several researchers have investigated
variations in vital health signals, such as the respiratory
rate and heart rate, in the presence of acute emotional
stress (e.g., when the person is lying) or a mental problem
[71-[9]. For instance, Sung et al. have demonstrated
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changes in the heart and respiratory rates in live poker
game scenarios [10].

o Indirect consequences: Although disclosure of medical
information using the proposed privacy attacks might not
be directly lethal, unlike attacks on the integrity of the
medical device [4], [5], it may lead to a subsequent
tailored integrity attack. For instance, as described later,
extracting medical device information, model, type, and
configuration using EM leakage from the device may pro-
vide enough information to an adversary to design a more
effective integrity attack using the extracted parameters.
Moreover, detection of usage of certain medical devices
by adversaries may endanger the safety of the patient,
e.g., if the device is very expensive and attracts theft, or
embarrass the subject if the medical condition carries a
social stigma [6].

III. INFORMATION LEAKAGE

In this section, we first discuss the possible sources
of information leakage, followed by brief descriptions of
different types of signal leakages addressed in this paper.

A. Leakage sources

In this work, we consider two sources of information
leakage: (i) human body and (ii)) IWMDs. Each source con-
tinuously leaks information through different types of signals.

Several organs in our body generate biomedical signals.
Some of these signals can be remotely captured and analyzed.
For example, our lungs generate an acoustic wave called
respiration sound, which can be captured by a microphone.

In addition to body organs, IWMDs may also reveal
critical health information under normal operation even when
not using any wireless communication to transmit data. For
example, the electrical motor of an insulin pump generates
an acoustic signal when injecting insulin. As described later
in Section IV, performing simple signal processing on this
acoustic signal can reveal the prescribed insulin dose.

B. Leakage types

In general, leaked physiological signals can be divided
into two types: (i) acoustic and (ii)) EM signals. Fig. 1
demonstrates the sources of leakage, as well as the different
types of signals that we consider in this work. Body organs,
such as heart and lungs, produce an acoustic signal that can
be captured remotely and analyzed. IWMDs, such as an
insulin pump or BP monitor, may also generate acoustic and
EM signals during their normal operation even if they are
not transmitting any data. The following subsections describe
these signals in detail.

B.1 Body-related information

The human body consists of several continuously-operating
organs. Various acoustic and EM signals are generated as
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Fig. 1. Sources of leakage and different types of signals that are continuously
leaking from the human body and IWMDs.

a result. The majority of these signals are too weak to be
captured without physical contact or may be absorbed by
other organs before emanating from the body. For example,
electrical activities originating from nerves carry real-time
information about health status. The two commonly-used
methods for measuring these signals are electroencephalog-
raphy (EEG) and electrocardiography (ECG). The amplitudes
of EEG and ECG signals vary from tens of microvolts to few
millivolts. The frequencies of most of these signals are below
40 Hz [11]. Another example is the acoustic signal generated
by blood circulating through internal organs. However, this is
absorbed by the surrounding muscles and tissues.

If an EM or acoustic signal generated by an organ
emanates from the human body, it may be captured and
analyzed to reveal health-related information. For example,
one such signal is the respiration sound that is generated
by chest vibration and airflow through the mouth. In the
following subsections, we discuss different types of signals
that might leak from the human body during normal operation.

B.1.1 Acoustic signals emanating from the human body

Some of the body organs generate acoustic signals during
their normal operation. In this work, we examine the feasibility
of capturing such naturally-occurring acoustic signals from a
distance to reveal confidential health information of a person.
Specifically, we show how capturing acoustic signals generated
by two organs, heart and lungs, can reveal critical information.

As discussed later in Section IV, a simple signal processing
algorithm enables us to count the number of peaks in the
raw heart sound signal and thus compute the heart rate. The
heart rate may be an indicator of several critical illnesses or
a sudden emotional stress. For example, when a person lies,
his heart rate gets elevated above the normal [12]. Therefore,
if an adversary can monitor the heart rate remotely, he may
even be able to assess whether the person is telling the truth.

Respiratory sounds also reveal valuable information
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about the health condition of an individual. The process of
recording respiratory sounds and analyzing them is referred to
as computerized respiratory sound analysis [13]; it provides
crucial information on respiratory dysfunction, and changes
in the respiratory characteristics (e.g., duration, timing).

B.1.2 EM signals emanating from the human body

The human body continuously emits infrared radiation that
carries health information. These raw data can be captured
and processed by an attacker at a distance. The existence of
such a natural continuous leakage of information may allow
an attacker to acquire critical information about the patient’s
health condition even if all IWMDs and their communications
are completely secure, e.g., using encryption.

The use of thermal images has increased dramatically in
the medical applications during the last decade. Thermal
imaging cameras highlight warm objects against cooler
backgrounds. As a result, the human body is easily visible in
the environment. Moreover, some physiological variations in
the human body can also be detected with thermal imaging
techniques employed in medical diagnostic procedures.
Several research projects on thermal imaging have been
discussed in the medical literature. Using these methods
[14]-{16], an eavesdropper can easily reveal the health status
of a person. For example, in [14], Arora et al. showed the
effectiveness of detecting breast cancer using digital infrared
thermal imaging. The possibility of mass fever detection
using thermal imaging techniques is described in [15].

B.2 IWMD-related information

As mentioned earlier, IWMDs are used for monitoring and
therapeutic purposes. An IWMD may leak health-related data
or metadata that compromise the patient’s privacy. Next, we
describe how IWMDs can leak information through acoustic
and EM signals.

B.2.1 Acoustic signals emanating from IWMDs

First, we describe acoustic leakage from ITWMDs. Acous-
tic waves propagate through a transmission medium using
adiabatic compression and decompression. These waves are
generated by a source. The source vibrates the medium,
leading to propagation of vibrations from the source.

Electronic devices with microelectromechanical parts gen-
erate unintentional acoustic signals during normal operation.
Some recent research efforts have demonstrated the feasibil-
ity of revealing critical information by interpreting acoustic
emanations from peripheral computer devices. For example,
researchers have shown that acoustic emanations from matrix
printers carry substantial information about the printed text
[17]. Moreover, Zhuang et al. have demonstrated the feasibility
of recovering keystrokes typed on a keyboard from a sound
recording of the user typing.
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In this work, we demonstrate how acoustic signals
generated by an IWMD (e.g., an insulin pump) may carry
significant information about the patient’s health status and
the functioning of the medical device.

B.2.2 EM signals emanating from IWMDs

Next, we discuss EM radiations from IWMDs. We di-
vide the EM radiations into two classes: (i) unintentionally-
generated and (i) intentionally-generated. Generally, an elec-
tronic equipment may emit unintentional EM signals that can
be used as side-channel information, allowing eavesdroppers
to reconstruct processed data at a distance [18]. This has been
a concern in the design of military hardware for over half a
century [19]. IWMDs can also unintentionally generate EM
signals while performing their regular tasks. These signals
may reveal critical information about the status of the med-
ical device and patient’s health condition. In this work, we
demonstrate how an insulin pump can leak information about
its function by emitting unintentional EM radiations.

In addition to unintentional EM radiations, medical devices
may use EM signals intentionally to wirelessly transmit med-
ical data. Eavesdropping on unencrypted wireless communi-
cation has been addressed in several research articles [4], [5].
In this work, we focus on the metadata that leaks through
wireless communication even when the packets are encrypted.

IV. PRIVACY ATTACKS

In this section, we propose and discuss various attacks on
the privacy of medical data based on the information leaked
from the human body and IWMDs. Table I summarizes the
sources of leakage, the types of signals, and the information
extracted from each attack, that are investigated in this work.
For each attack, we first describe one or two methods to
capture the signals and then our processing algorithms to
interpret the captured signals in order to reveal the patient’s
health condition.

TABLE I
SOURCES OF LEAKAGE, TYPES OF SIGNALS, AND INFORMATION
EXTRACTED
Source | Type of signal | Information extracted
Human Body Acoustic Respiration/Heart rate
[WMDs Acoustic Insulin dose and BP

EM (unintentional) BP
EM (wireless) Device info. and insulin dose

A. Acoustic signal based body-related attacks

Next, we target the acoustic signals leaked during the
normal functioning of lungs and heart. We first describe
two methods for remotely capturing the sounds from these
organs. Then, we demonstrate how we can accurately extract
respiration and heart rates from the captured signals.

4

A.1 Capturing acoustic signals emanating from the lungs and
heart

Method 1: We have used a displacement-based laser micro-
phone that uses a laser beam to detect sound vibrations from a
distance. Laser microphones were invented to eavesdrop on a
conversation with a minimal chance of exposure. Although
they have been used for surveillance purposes for a long
time [20], for the first time, we employ these microphones
in the context of a privacy attack on patients’ medical data.
We have built an inexpensive laser microphone to detect
vibrations emanating from the human heart and lungs. This
device is based on detecting the varying amounts of reflected
laser beam received by a single ambient light sensor. As
illustrated in Fig. 2, the laser beam forms a small incident
angle with the surface. Surface vibration along the normal
vector causes displacement of the reflected beam, and as
a result, the amount of laser signal reaching the receiver
varies for different displacements. Fig. 3 shows the receiver
for capturing an acoustic signal using a laser microphone. It
connects to the processing unit using an aux cable.

Method 2: The second capture method we propose is based
on a parabolic microphone (KIB-Det [21]) to capture weak
acoustic signals generated by the lungs. It uses a parabolic
reflector to collect and focus sound waves onto a receiver. It
amplifies the acoustic signal by concentrating all of the sonic
energy at the focal point, thus increasing the signal-to-noise
ratio (SNR). KIB-Det comes with a 20-inch parabolic dish. In
addition, electronic amplifiers used in KJB-Det can increase
the overall level of both noise and acoustic signal, without
degrading the SNR.

Displacement

P (

HHHH

Sensor
Y

Chest wall/ Vein wall

Fig. 2. Schematic for displacement-based laser microphone: the laser beam
forms a small incident angle with the surface. The fraction of light beam
received by the light sensor depends on the vibration of the surface.

A.2 Extracting respiration and heart rates

Next, we first describe a method to extract the heart and
respiration rates from the captured acoustic signal. Then, we
discuss the parameters that affect the accuracy and detection
range of each of the two capture methods described above.
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Fig. 3. Receiver set-up used for the displacement-based laser microphone.

For obtaining the heart and respiration rates, we use a simple
algorithm to find the local maxima. In order to reduce the
effect of noise, the algorithm ensures that the distance between
two consecutive peaks is more than the value of a parameter
called distanceT hreshold. The maximum possible human
heart rate (200 pulse per minute) and respiration rate (80
breaths per minute) are used to define distanceT hreshold.
Thus, distancel hreshold is set to 5ms and 12.5ms for the
heart and respiration rates, respectively.

In Method 1, we use the laser-displacement microphone
for capturing acoustic signals from both the lungs and heart.
The sound quality obtained by this microphone depends on
two factors: (a) reflection fraction, which is the fraction of
the incident beam that is reflected by the surface, and (b)
the displacement of the received beam. The first parameter
depends on the nature of the surface. For example, the human
skin absorbs a large fraction of the incident beam; therefore,
the sensor should be placed close to the skin to receive the
beam. However, the displacement of the received beam on
the sensor decreases as the sensor gets nearer the reflecting
surface. We were able to accurately extract the respiration
rate from 5 cm away. If the person wears a metallic/reflecting
necklace, we can point the incident beam towards the necklace
instead, which is a better reflector than the human skin. We
were able to accurately extract the respiration rate from 6 m
away when the person wore a flat steel necklace. We also used
a displacement-based laser microphone to detect the heart rate.
In the absence of an attached reflector surface, the acoustic
signal was used by the laser microphone to detect the heart
rate with over 95% accuracy at a distance of 5 cm. At greater
distances, the amount of received beam reduces drastically and
the accuracy drops.

The audio gain of a parabolic microphone increases as
the frequency increases. The gain of an ideal 20-inch dish
with a perfect parabolic shape and focus is characterized
by a curve starting from 0 dB at 200 Hz. In order to
enhance the amplification of our parabolic microphone, we
replaced its dish with a larger 1 m dish that provides a 6
dB amplification at 200 Hz. At lower frequencies, the most

Transactions on Emerging Topics in Computing

important parameters are dish size and the quality of the
microphone. The modified parabolic microphone was able to
detect the respiration rate at a distance of 5 m. However, the
parabolic microphone was unable to detect the heart rate.

B. Acoustic signal based IWMD-related attacks

Acoustic signals generated unintentionally by an IWMD
can provide valuable information to an unauthorized party.
Each IWMD consists of different components. Some of these
components (e.g., electrical motors and relays) can produce a
capturable sound during normal operation. An unintentionally-
generated acoustic signal can be used as a side-channel
information to reveal the status of the medical device and
the patient’s condition. In addition to this class of acoustic
signals, some IWMDs intentionally produce acoustic signals to
notify the users of conditions that require immediate attention.
Many medical devices have alarm systems; among them are
insulin pumps, pulse oximetry devices, and BP monitors.
These alarms offer necessary warnings to inform patients
of changes in their health condition. They usually provide
sophisticated mechanisms for safety checks. These alarms
make the patient aware of an unusual situation. Generally,
the audible frequency range for a human is between 20 Hz
and 20 kHz. Frequency ranges of 2 kHz to 4 kHz are most
easily heard. For this reason, most alarms emit sound in this
frequency range.

Several sound-recording equipments are available on the
market, ranging from simple microphones to sophisticated
parabolic microphones. In the following subsections, we
describe two different attacks using acoustic signals. In the
first attack, we capture and amplify the sound of an electrical
motor using a parabolic microphone. In the second attack,
we use a simple microphone to record the required acoustic
signal. We were able to accurately determine the amount
of injected insulin from 1 m and 10 m away for the first
and second attacks, respectively. Using a more powerful
microphone or amplifier will obviously increase this range.

B.1 Acoustic leakage from an insulin delivery system

We now describe how acoustic signals leaking from an
insulin delivery system can reveal the patient’s health con-
dition. Fig. 4 shows a schematic view of an insulin pump.
The display screen allows the user to set the value of different
device parameters. The controller controls the motor, which
pushes the piston rod forward to release a prescribed amount
of insulin. In this medical device, the electrical motor uninten-
tionally generates acoustic signals and the speaker intention-
ally produces different alarms as reminders for calibration and
high/low glucose, and as predictive high/low glucose alerts.
The components marked in red (motor and buzzer) generate
the acoustic signals that we can interpret to reveal the medical
data.

Here, we present two attacks on an insulin pump using
these acoustic signals. First, we demonstrate how capturing
and interpreting the unintentional acoustic signal generated
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©CoO~NOUTA,WNPE

Transactions on Emerging Topics in Computing

by its electrical motor can reveal the patient’s prescribed
dosage, and hence the level of diabetes. Second, we use the
acoustic signals generated by its safety system to remotely
examine the status of the device and extract the prescribed
dosage.

User Interface ROM

LED
Driver Power Management
LCD Processor
Driver h"
Keypad
Bieaad: Alarm and Safety Control

Audio _‘
Controller

Buzzer

Controller

Fig. 4. A schematic view of an insulin pump

B.1.1 Extracting information from motor sounds of an insulin
pump

We show below how processing the weak acoustic signal
generated by the electrical motor of an insulin pump can reveal
the exact amount of injected insulin, and as a result, provide
an estimation of initial blood sugar, and level of diabetes. We
propose two signal processing algorithms for this purpose.

In an insulin pump, a step motor is used in the injection
procedure. Our experiments demonstrate that there is a linear
relationship between the number of rotation steps of the elec-
trical motor and the amount of injected insulin (Fig. 5). Fig. 6
illustrates the acoustic signal generated by the electrical motor
while injecting 0.8 unit of insulin. Each peak corresponds to
one step of the motor. The first processing algorithm finds the
number of peaks. Thus, for this case, the total number of steps
is calculated as 16, thereby inferring that 0.8 unit of insulin
was injected.

Algorithm InsPumpl shows the pseudo-code for our first
proposed algorithm. It calculates the exact amount of injected
insulin based on the number of motor steps. Its four inputs
are: (1) acousticSignal, which is the acoustic signal of the
electrical motor sampled at 22 KHz, (ii) distance, which
indicates the minimum acceptable distance between two con-
secutive peaks (steps), (iii) threshold, which is the minimum
acceptable amplitude of a peak, and (iv) widthThreshold,
which is the width of a step in the absence of environmental
noise. We obtain the number of steps from the number of
peaks in acousticSignal using subroutine stepCount. Then,
using another subroutine stepWidth, we calculate the width
of each step that is defined as the time when the peak and its
neighboring points are greater than widthThreshold. After
finding the number of peaks and the width of each peak,
we estimate the number of steps that might be corrupted by
comparing the width of each peak to widthThreshold. If the

6

width is more than widthThreshold, it is likely to contain
noise in the area around the peak. This algorithm is able to
automatically detect the number of peaks in acousticSignal
that are corrupted. If the number of corrupted locations in
acousticSignal is more than three, there will not be enough
information in acousticSignal to reveal the exact insulin
dose. Therefore, the attacker should discard that waveform,
and try again later when background noise is less powerful.

In order to evaluate and compare our acoustic signal
based algorithms, we constructed a test set consisting of
20 acoustic signals generated by the insulin pump when
injecting four different doses of 0.2, 0.4, 0.6, and 0.8 unit of
insulin (five injections for each dose). We captured the first
10 acoustic signals in a silent office (low-noise environment).
We captured the other acoustic signals in the presence of
background noise generated by a conversation. The algorithm
could extract the injected dose exactly for the first 10 cases.
In the presence of the conversation, the algorithm correctly
detected the corrupted signal in four cases, and extracted the
exact injected dose in the other six cases.

Algorithm InsPumpl. Calculating the exact amount of insulin
dosage from the acoustic signal leaked by the insulin pump.

Given: acousticSignal, distance, threshold, and

widthT hreshold

. steps < stepCount(acousticSignal, threshold, distance)
.widths < stepWidth(acousticSignal, threshold, distance)
. for each width in widths
i f(width > widthThreshold)
noisy < noisy + (width/widthThreshold)
end
. end
. if(noisy > 3)
9. Print “ Warning: Inaccurate ”
10. return —1
11. else
12. dosage < |steps/4] x 0.2
13. Print dosage
14. return 0
15. end

Output: dosage
Return Status: 0 (accurate) or -1 (inaccurate)

In addition to counting the number of steps, we can calculate
the duration of an injection. Calculating the duration is more
robust against noise. In our second porposed algorithm, we
show how an adversary can use an estimation of the injection
duration to find the exact amount of injected insulin without
knowing the exact number of steps.

The amount of injected insulin is quantized to a multiple
of 0.2 unit of insulin. As a result, the injection duration is
quantized and is a multiple of 7 seconds. For example, the
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Injected dose = 0.2*(Number of steps/4)

15}

Injected dose (unit)
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Fig. 5. Dose of injected insulin vs. the number of rotation steps of the
electrical motor.
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Fig. 6. Acoustic signal generated by the electrical motor of an insulin pump
while injecting 0.8 unit of insulin.

injection of 0.2 and 0.4 unit of insulin takes about 7 and 14
seconds, respectively. Fig. 7 shows the amount of injected
insulin with respect to injection duration. It shows there is
an almost-linear relationship between the amount of injected
insulin and injection duration. Therefore, if the attacker can
only estimate the injection duration by calculating the time
during which the sound of the electrical motor is present, he
can find the exact amount of injected insulin even when a large
fraction of the acoustic signal is dominated by background
noise and counting the total number of steps is not feasible
(Fig. 8). Using the test set described earlier, our duration-based
algorithm was able to extract the exact amount of insulin in
18 of the 20 cases (10 under low-noise signals and 8 under
noisy signals). Similar to the previous method, this algorithm
was also able to automatically detect the situations in which
the presence of noise affects the computed results.

In summary, capturing and processing the acoustic signal
generated by the electrical motor of an insulin pump may
reveal the injected dosage, and as a result, reveal the medical
condition of the patient. The medical literature suggests that
one unit of insulin is required per 50 mg/dl above 120 mg/dl
of blood sugar [22]. Therefore, after measuring the insulin
dosage, we can also estimate the level of blood sugar before
injection.

Transactions on Emerging Topics in Computing

Injected dose (unit)

Injected dose = 0.2 * (Duration of Injection / 7)
0 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80
Duration of injection (s)

Fig. 7. Dose of injected insulin vs. injection duration.
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Fig. 8. Acoustic signal generated by the electrical motor of an insulin pump
when 0.8 unit of insulin is injected. For a large fraction of time, the acoustic
signal is dominated by background noise, and counting the number of rotation
steps is not feasible.

B.1.2 Eavesdropping on alarms of an insulin pump

We describe below how the safety system of an insulin
pump, which intentionally generates acoustic signals to inform
patients, can unintentionally leak critical information about the
health condition of a patient. As mentioned earlier, alarms
are intended to alert patients of special events. The controller
unit of the insulin pump (Fig. 4) is responsible for handling
alerts and alarms, and the speaker generates audible signals in
various situations, including blockage, low/high sugar level,
initialization, and end of an injection.

Each injection procedure has four different phases: (i)
initialization, (ii) confirmation, (iii) injection, and (iv) end of
injection. Fig. 9 shows the acoustic signal generated by the
alarm system of an insulin pump when a user tries to inject
0.8 unit of insulin. The four phases of the injection procedure
are demonstrated in this figure. After the patient sends the
injection command, the beginning of the initialization phase is
reported by a single beep sound. Then, the user sets the dosage.
In the confirmation phase, multiple beeps are generated based
on the desired dosage. In this phase, one beep is generated by
the safety system for every increment of 0.2 unit in insulin
dose. However, the frequency of beeps in this phase is 2x
higher than that in the initialization phase. Next, the injection
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begins and finally the end of injection is reported to the patient
by a single beep.

We used three methods to find the exact amount of injected
insulin by interpreting the acoustic signal: (i) initialization-
based method that counts the number of peaks (beeps) in
the initialization phase, (ii) confirmation-based method that
counts the number of peaks in the confirmation phase, and
(iii) duration-based method that calculates injection duration.
Although the first two methods are straightforward, the third
method is more accurate, especially in noisy environments.
Similar to the previous attack (Section B.1.1), by extracting
the quantized values of injection duration and dose, the exact
prescribed dosage can be calculated, even if the attacker cannot
count the number of beeps, but only estimate the injection
duration. The injected dosage can be directly computed based
on the almost-linear relationship between injection duration
and injected dosage (Fig. 7).

In order to evaluate the accuracy of each algorithm, we
constructed a similar test set to the one we used earlier. We
captured the acoustic signal from 10 m away. The raw signal
was amplified using a cheap amplifier before processing. All
three methods could accurately extract the injected dose in the
low-noise environment. Table II shows the number of correct
and incorrect calculations and accuracy of each method in
the noisy environment. The duration-based method showed the
best accuracy, where accuracy is defined as the percentage of
correctly-calculated doses.

TABLE II
ACCURACY OF THE THREE METHODS FOR EAVESDROPPING ON THE
ALARM SYSTEM OF AN INSULIN PUMP

Method Correct  Incorrect  Accuracy (%)
Initialization-based 6 4 60
Confirmation-based 7 3 70
Duration-based 10 0 100

In addition to compromising health-related information of a
patient, the status of the medical device, such as blockage and
low-battery state, can also be directly extracted by capturing
and analyzing the alarms generated by the insulin pump.

Initialization

0.08 T T
/ /{ Confirmation
0.06 q
0.04 Duration of Injection = 29.7 s 4
0.02 q
)
=
£
=3 0 b
2 |
—0.02 4
Injection
-0.04 | 4
—0.06 i
End of Injection
—0.08
0 5 10 15 20 25 30 35 40 45
Time (s)

Fig. 9. Acoustic signal generated by the safety system of an insulin pump
when the user tries to inject 0.8 unit of insulin.
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B.2 Interpreting the leaked acoustic signal of an ambulatory
BP monitoring device

In this section, we target an ambulatory BP monitoring
device. Fig. 10 shows a block diagram of such a device. The
components shown in red are the major sources of acoustic
leakage. We interpret the sound generated by its electrical
pump to estimate the patient’s BP, which is the pressure
generated by circulating blood upon the walls of blood
veins. BP is commonly represented by two numbers (systolic
and diastolic), and is measured in millimeters of mercury
(mm Hg). Non-invasive ambulatory BP monitoring is being
increasingly used to continuously monitor patients’” BP. A
digital BP monitor has a cuff and digital pressure sensor.
When a user inserts his arm in the cuff, it is automatically
inflated by an electric motor. The digital monitor determines
the BP and heart rate by measuring the small oscillations
when the pressure is slowly released from the cuff. Common
BP monitoring devices use a simple algorithm to derive an
upper bound on systolic BP. They inflate the cuff to reach
the upper bound in every measurement. However, in order to
ensure patient’s comfort, some new BP devices often use a
technology known as fuzzy logic, which anticipates systolic
BP to prevent over-inflation. In these devices, the highest
pressure in the cuff is approximately 10 mm Hg to 15 mm Hg
more than the actual systolic pressure. In this paper, we have
targeted a commercially available BP monitoring system. We
choose not to disclose its brand and model number. Next, we
discuss how the sound generated by the electrical pump can
provide enough information for an eavesdropper to accurately
estimate the BP (both systolic and diastolic).

AMP

e

Control
Unit

Fig. 10. Block diagram of an ambulatory BP monitoring device.

Our experiments demonstrate that each measurement con-
sists of three consecutive phases: (i) inflation phase in which
the cuff pressure increases to reach its upper bound value,
(ii) step-wise deflation phase in which the monitoring device
opens an air valve to slowly decrease the cuff pressure and
measure the BP, and (iii) restart phase. Fig. 11 shows the
acoustic signal generated during the measurement.

In the BP monitoring device used in our experiments, the
cuff pressure decreases about 9 mm Hg for each step of
deflation in the second phase of measurement. In addition,
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AmbBP gives the pseudo-code for the improved version of
our algorithm. We define a function, called in f Count, which
finds the number of inflation phases separated by deflation
steps. This improved algorithm automatically detects whether
the algorithm is unable to calculate the BP accurately.

Algorithm AmbBP. Estimating systolic and diastolic BP by
processing the acoustic signal from an ambulatory BP monitor

Given: acousticSignal,table where table : T, — Py

e
02l B
Step-wise deflation Restart
~03 L L L L
o 5 10 25 30 35

s 20
Time (s)

Fig. 11. Acoustic signal generated by the ambulatory BP monitoring device.
Three phases of measurement are shown.

we found that the systolic BP was detected after three or four
steps in the step-wise deflation phase, which suggests that the
systolic BP should be in the range of (P, — 27) mm Hg to
(Py, — 36) mm Hg, where P}, is the maximum cuff pressure
in the inflation phase. Moreover, based on our experimental
results, the diastolic pressure is usually detected in the range of
P, mm Hg to (P, +9) mm Hg, where P, is the minimum cuff
pressure during the step-wise deflation phase before the device
enters the restart phase. In order to examine the accuracy of
the above claim, we used 25 BP measurements. The systolic
BP was in the range of (P, — 27) mm Hg to (P, — 36) mm
Hg for 21 out of 25 measurements. Moreover, for 23 out of
25 measurements, the diastolic BP was in the range of P, mm
Hg to (P,+9) mm Hg. Therefore, if we can develop a method
to detect P}, and P, the systolic and diastolic pressure can be
estimated as (P, —27+ P, —36)/2 mm Hg and (P,+P,+9)/2
mm Hg, respectively.

Next, we describe how we can use the acoustic signal
generated by the electrical pump to extract P, and P, and
thus estimate the BP. The cuff pressure reaches its maximum
value at the end of the inflation phase. In order to find the
maximum value for an arbitrary measurement, we construct
a look-up table that maps the maximum pressure (F) to
the duration of inflation (73), where P, varies from 100
mm Hg to 180 mm Hg. For each measurement, we first
calculate 7} by finding the part of the acoustic signal in
which the pumping sound is present. Then, we use the
look-up table to find P;. Thereafter, we count the number
of steps before deflation. Then, we calculate the range of
systolic and diastolic pressures, and report the middle points
of these ranges as their estimate. Our experimental results
show that for 19 out of 25 arbitrary measurements, this
algorithm calculates both systolic and diastolic pressures with
absolute error less than 8%, where error is defined as the
difference between the estimated and actual values divided
by the actual value. The main reason for the six failed
cases was re-inflation. Re-inflation occurs when the patient
suddenly changes his arm position during the step-wise
deflation phase. In this case, the monitoring device increases
the cuff pressure again. It is easy to modify the method to
detect the situation in which re-inflation occurs. Algorithm

. inf Number + infCount(acousticSignal)
.if(Inf Number > 1)

Print *“ Warning: Inaccurate ”
return — 1

. Ty, « calculateTimeO fIn flation(acousticSignal)
. Pp « lookUp(Ty, table)
. Steps + CountPeaks(acousticSignal)
9. upperSystolic < P, — 27
10. lowerSystolic < Py, — 36
11. P, < Py, — numberO fSteps * 9
12. upper Diastolic < P,
13. lower Diastolic <+ P, + 9
14. SyStOlZC — upperSystolict+lowerSystolic
15. diastolic < 5
16. Print diastolic, systolic
17. return 0

1
2
3
4,
5. end
6
7
8

upperDiastol2i0+lowerDiastolic

Output: diastolic, systolic, or the warning message
Return  status: O  (accurate) or -1 (inaccurate)

C. EM radiation based IWMD-related attacks

We target two classes of EM radiations: (i) unintentional
EM radiations that are signals generated by different
components of an IWMD (e.g., processor, controller), and
(ii) intentional EM radiations that are encrypted wireless
communications that transmit medical data. Next, we discuss
two EM radiation based attacks using each class of EM
radiations, namely from the pump in a BP monitor, and based
on the metadata of wireless communications of an insulin

pump.
C.1 Estimating BP from unintentional EM radiations

Next, we discuss an attack based on capturing and
analyzing the EM radiation that is unintentionally generated
by the BP monitoring device.

C.1.1 Capturing unintentional EM signals
We use an oscilloscope (MSO/DPO5000) to detect the EM

signals. The EM side-channel information that we capture is
available during the normal operation of the medical device
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even when the device is not transmitting any data (e.g., using
a USB cable or wireless communication). We capture the raw
EM signal directly from the antenna that is connected to the
oscilloscope, instead of a filtered and demodulated signal with
limited bandwidth. We use an antenna (75 Ohms VHA 9103
Dipol Balun) to improve the SNR for signals in the 25 MHz
to 500 MHz frequency band. Moreover, we check if these EM
signals can be captured using a small portable antenna, such
as a simple loop of 0.5-meter copper wire.

EM signals may remain undetected using standard
techniques. Spectral analyzers need significantly static
carrier signals. The demodulation process may eliminate the
interesting components of unintentionally-emitted EM signals.
In addition, the scanning process of wide-band receivers may
take a lot of time [23].

C.1.2 Processing the captured EM signals

Using the EM signals captured from the BP monitoring
device, we were able to estimate the patient’s BP. EM
radiations reveal the activity of the electrical pump in the
different phases of a measurement (inflation, step-wise
deflation, and restart). The duration of the inflation phase can
be revealed by calculating the time when the electrical motor
produces the EM radiations, and as a result, the systolic BP
can be extracted by using the method discussed earlier for
extracting systolic BP from acoustic signals. Moreover, by
monitoring the activity of the device in the deflation phase,
the number of deflation steps could be detected. Estimating
the BP using EM signals was as accurate as when it was
estimated from acoustic signals. However, this method can
be easily used in a crowded environment, where the acoustic
signal may be dominated by background noise. The activity
of the electrical pump in the inflation phase was completely
detectable from 15 cm away when we used the VHA antenna.
Moreover, when we replaced the VHA antenna with a 0.5 m
wire, we were able to detect the activity from 10 cm away.
The deflation steps were detectable using the VHA antenna
and wire from 10 cm and 5 cm away, respectively.

C.2 Extracting insulin dosage regimen from the wireless
communication metadata of the insulin pump

Next, we describe how capturing and processing the
metadata leaked from the communication channel of an
insulin pump can reveal critical medical information,
including the injected dose of insulin, number of injections,
and level of diabetes.

C.2.1 Capturing the metadata of wireless communication

In order to monitor fully-encrypted wireless communication
and extract the metadata from the communication channel, we
first need to find the frequency band of the transmission. If
the model and type of the device are known, the frequency
range can be extracted from manufacturer’s documentation.

In general, an IWMD should make its existence and type
unknown to unauthorized parties. If a device reveals its ex-

10

istence, its type should still remain hidden to unauthorized
persons. This may be for many different reasons. For example,
the device might be extremely expensive. More importantly,
knowing the specific model of a device may provide critical
information to potential adversaries. As we elaborate later, if
the type, characteristics, and settings of an IWMD are known,
designing a tailored attack becomes much easier. A tailored
attack is a smart attack based on the specific features and
configurations of a known device. Therefore, we assume that
the model and type of the IWMD are not known to the attacker.

A fast approach for detecting the frequency band of a
wireless transmission is through an oscilloscope that uses
a loop of wire as an antenna. The eavesdropper can scan
different frequency ranges when the communication channel
is active and guess the frequency range. In addition, the
frequency band of communication for an unknown IWMD can
usually be obtained by scanning some specific bands based
on the fact that FDA regulations impose specific limits on the
frequency bands of medical devices. The majority of medical
devices communicate at 450 MHz, 600 MHz, 900 MHz, 1.4
GHz, and 2.4 GHz.

After finding the frequency band of transmission, the
encrypted packets can be captured using one or multiple
universal software radio peripherals (USRPs) [24]. Next,
we demonstrate how examining the frequency band of the
channel and characteristics of the packets can reveal critical
health information.

C.2.2 Processing the captured EM signals

Different manufacturers have different priorities and con-
siderations. Thus, design priorities of IWMDs vary from one
device to another. As a result, the metadata of the commu-
nication channel of one device are different from those of
others. The metadata-based attack that we discuss next consists
of two main steps: (i) the eavesdropper first extracts the
metadata from the communication channel to reveal valuable
information about the type and model of the IWMD, and
(i) when the device type is known, the attacker designs a
tailored attack that specifically targets the known device. We
discuss six classes of metadata leaked from the communication
channel that can be used to find valuable information about the
device: (i) frequency of communication, (ii) time between two
consecutive transmissions, (iii) communication protocol, (iv)
packet size, (v) detection range, and (vi) modulation protocol.
However, in most cases, a subset of these classes can uniquely
identify the model and type of the device.

We describe this attack using the insulin pump delivery
system. For the insulin pump we used in this research, the
frequency of communication (around 900 MHz), time between
two packets (5 minutes), and modulation protocol (on-off
keying) would be conclusive enough for an adversary to
uniquely identify the insulin pump and its manufacturer. In
addition, the detection range (20 m) and packet size (80
bits) match the information given in the documentation of the
device.

Next, we describe a tailored attack against a known insulin
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pump. We assume all communications are fully encrypted.
In the first step of the metadata-based attack, we find the
model and type of the insulin pump. This specific model
comes with a remote control. The remote control is a device
that controls and programs the insulin pump and allows the
user to deliver a discrete bolus dose or stop/resume insulin
delivery. Each button on the remote control sends a specific
command to the insulin pump. The size of remote control
is usually small to assure patient’s convenience, and as a
result, there are only a few buttons on the remote control.
Different sequences of buttons on the insulin pump are to
be pressed in different situations. For the insulin pump that
we monitored in our experiment, the patient should use at
least three button presses to start the injection: (i) the first
button tells the device to initialize the injection, (ii) the second
button is used to set the dosage of injection, and (iii) the
third button confirms the injection. The patient can press the
second button multiple times to increase the dosage. In this
scenario, interpreting the number of consecutive packets can
uniquely reveal the occurrence of the injection, and the insulin
dosage. For example, if seven packets are captured by the
USRP in this case, the first and last packets would represent
initialization and confirmation. Thus, the other five packets
can be assumed to be sent to increase the amount of injected
insulin. Therefore, monitoring the transmission channel, even
when it is fully encrypted and packets do not carry any
meaning to the attacker, can reveal the prescribed dosage of
insulin. Moreover, the number of injections can be extracted
by counting the number of transmissions that include more
than three packets.

V. POSSIBLE COUNTERMEASURES

In this section, we briefly discuss some possible counter-
measures to protect the patient against the privacy attacks
described in this article. We hope these initial suggestions
would spur further research on countermeasures against such
attacks. We discuss different countermeasures for each source
of leaked signals (human body and IWMDs).

Hiding information that leaks from the body is difficult
because there are many local sources of leakage, e.g., lungs,
heart, and skin. We can hide some of this information using
cloth as a shield. However, since it is typically not possible
to cover the whole body, medical information may at least
leak from the face. For example, the EM radiation from the
face leaks enough information to detect if a person has fever.
Moreover, many components inside medical devices may gen-
erate acoustic or EM signals: the motherboard, communication
cables, processor, and actuators. The simplest solution for
eliminating the leakage of compromising information from
IWMDs is use of a shield. However, incorporating a shield
will increase the IWMD price and thus may not be desirable
from a cost perspective. Another solution could be to analyze
the local sources of leakage (e.g., motherboard, wires, and
display board) during the manufacturing process, and add extra
components to generate noise with specific characteristics
so as to hide the information leakage. This approach also
increases the cost of manufacture. Moreover, adding a noise

Transactions on Emerging Topics in Computing

generator may increase the energy consumption of the device
and thus reduce its battery lifetime. Such masking techniques
have been explored in the context of traditional side-channel
attacks on cryptographic systems.

VI. CONCLUSION

In this paper, we discussed two sources, namely the human
body and IWMDs, that continuously leak health information
under normal operation. We targeted two types of signals for
each source: acoustic and EM. We then described a variety of
attacks on the privacy of health data by capturing and pro-
cessing unintentionally-generated leaked signals. Moreover,
we discussed the feasibility of using intentionally-generated
acoustic signals (as a side-channel information) and EM
signals (as a carrier of metadata) to compromise the patient’s
health privacy. Finally, we suggested some countermeasures.

REFERENCES

[1] M. Zhang, A. Raghunathan, and N. K. Jha, “Trustworthiness of medical
devices and body area networks,” Proc. IEEE, vol. 102, no. 8, pp. 1174—
1188, Aug. 2014.

[2] J. C. Haartsen, “The bluetooth radio system,” IEEE Personal Commu-
nications, vol. 7, no. 1, pp. 28-36, 2000.

[3] P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta, and Y. F. Hu,
“Wireless sensor networks: A survey on the state of the art and the
802.15.4 and ZigBee standards,” Computer Communications, vol. 30,
no. 7, pp. 1655-1695, 2007.

[4] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-power
defenses,” in Proc. IEEE Symp. Security and Privacy, 2008, pp. 129-
142.

[5] C. Li, A. Raghunathan, and N. K. Jha, “Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system,” in Proc.
IEEE Int. Conf. e-Health Networking Applications and Services, 2011,
pp. 150-156.

[6] D. Halperin, T. Kohno, T. S. Heydt-Benjamin, K. Fu, and W. H. Maisel,
“Security and privacy for implantable medical devices,” IEEE Pervasive
Computing, vol. 7, no. 1, pp. 30-39, 2008.

[71 F. Mokhayeri, M. R. Akbarzadeh-T, and S. Toosizadeh, “Mental stress
detection using physiological signals based on soft computing tech-
niques,” in Proc. 18th Iranian Conf. Biomedical Engineering (ICBME),
Dec. 2011, pp. 232-237.

[8] B. Kaur, J. J. Durek, B. L. O’Kane, N. Tran, S. Moses, M. Luthra,
and V. N. Ikonomidou, “Heart rate variability (HRV): An indicator of
stress,” in Proc. SPIE Sensing Technology + Applications, 2014, pp.
91 180V-91 180V8.

[9] G. N. Dikecligil and L. R. Mujica-Parodi, “Ambulatory and challenge-
associated heart rate variability measures predict cardiac responses to
real-world acute emotional stress,” Biological Psychiatry, vol. 67, no. 12,
pp. 1185-1190, 2010.

[10] M. Sung and A. Pentland, “Pokermetrics: Stress and lie detection
through non-invasive physiological sensing,” Ph.D. dissertation, Ph.D.
thesis, MIT Media Laboratory, 2005.

[11] D. Svard, A. Cichocki, and A. Alvandpour, “Design and evaluation of
a capacitively-coupled sensor readout circuit toward contact-less ECG
and EEG,” in Proc. IEEE Biomedical Circuits and Systems Conference,
2010, pp. 302-305.

[12] M. T. Bradley and M. P. Janisse, “Accuracy demonstrations, threat, and
the detection of deception: Cardiovascular, electrodermal, and pupillary
measures,” Psychophysiology, vol. 18, no. 3, pp. 307-315, 1981.

[13] H. Pasterkamp, S. S. Kraman, and G. R. Wodicka, “Respiratory sounds:
Advances beyond the stethoscope,” American J. Respiratory and Critical
Care Medicine, vol. 156, no. 3, pp. 974-987, 1997.

[14] N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P.
Osborne, and R. M. Simmons, “Effectiveness of a noninvasive digital
infrared thermal imaging system in the detection of breast cancer,” The
American J. Surgery, vol. 196, no. 4, pp. 523-526, 2008.

https://mc.manuscriptcentral.com/tetc-cs



P OO~NOUILAWNPE

U OTUu AU DMBEMDIAMDIAMBAEDIAMDIMDNWOWWWWWWWWWWNDNNDNNNNMNNNNRPRPRPERPRERPERRER
QOO NOUPRRWNRPOOO~NOUOPRRWNPRPOOONOOUOPRARWNRPEPOOONOODURAWNRPOOO~NOOUUDMWNEO

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

Transactions on Emerging Topics in Computing

J. B. Mercer and E. F. J. Ring, “Fever screening and infrared thermal
imaging: Concerns and guidelines,” Thermology International, vol. 19,
no. 3, pp. 67-69, 2009.

L. J. Jiang, E. Y. K. Ng, A. C. B. Yeo, S. Wu, F. Pan, W. Y. Yau,
J. H. Chen, and Y. Yang, “A perspective on medical infrared imaging,”
J. Medical Engineering and Technology, vol. 29, no. 6, pp. 257-267,
2005.

M. Backes, M. Diirmuth, S. Gerling, M. Pinkal, and C. Sporleder,
“Acoustic side-channel attacks on printers,” in Proc. USENIX Security
Symposium, 2010, pp. 307-322.

H. Tanaka, “Evaluation of information leakage via electromagnetic
emanation and effectiveness of Tempest,” IEICE Trans. Information and
Systems, vol. 91, no. 5, pp. 1439-1446, 2008.

, “Information leakage via electromagnetic emanations and evalu-
ation of Tempest countermeasures,” Information Systems Security, pp.
167-179, 2007.

T. Wang, Z. Zhu, and A. Divakaran, “Long range audio and audio-
visual event detection using a laser Doppler vibrometer,” in Proc. SPIE
Defense, Security, and Sensing, 2010, p. 77040J.

“Detect ear - DET EAR,” http://www.kjbsecurity.com/products/detail/detect-

ear/117/, accessed: 02-1-2015.

K. L. Herbst and I. B. Hirsch, “Insulin strategies for primary care
providers,” Clinical Diabetes, vol. 20, no. 1, pp. 11-17, 2002.

L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” 2005, pp. 373-382.

M. Ettus, “Usrp users and developers guide,” Ettus Research LLC, 2005.

https://mc.manuscriptcentral.com/tetc-cs

Page 12 of 15
12



Page 13 of 15

0
1
2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

PRPRPOO~NOOOPRAWDNPE

Arsalan Mohsen Nia received his B.S. degree in
Computer Engineering from Sharif University of
Technology, Tehran, Iran, in 2012, and M.A. de-
gree in Electrical Engineering from Princeton, NJ,
in 2014. He is currently pursuing a Ph.D. degree
in Electrical Engineering at Princeton University,
NIJ. His research interests include wireless sensor
networks, Internet of things, computer security, dis-
tributed computing, mobile computing, and machine
learning.

Anand Raghunathan is a Professor and Chair of
VLSI in the School of Electrical and Computer Engi-
neering at Purdue University, where he leads the In-
tegrated Systems Laboratory. His research explores
domain-specific architecture, system-on-chip design,
embedded systems, and heterogeneous parallel com-
puting. Previously, he was a Senior Research Staff
Member at NEC Laboratories America and held the
Gopalakrishnan Visiting Chair in the Department of
Computer Science and Engineering at the Indian
Institute of Technology, Madras. Prof. Raghunathan
has co-authored a book (“High-level Power Analysis and Optimization”),
eight book chapters, 21 U.S patents, and over 200 refereed journal and
conference papers. His publications have been recognized with eight best
paper awards and four best paper nominations. He received the Patent of
the Year Award (recognizing the invention with the highest impact), and
two Technology Commercialization Awards from NEC. He was chosen by
MIT’s Technology Review among the TR35 (top 35 innovators under 35
years, across various disciplines of science and technology) in 2006, for
his work on “making mobile secure”. Prof. Raghunathan has served on the
technical program and organizing committees of several leading conferences
and workshops. He has chaired the ACM/IEEE International Symposium on
Low Power Electronics and Design, the ACM/IEEE International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, the IEEE
VLSI Test Symposium, and the IEEE International Conference on VLSI
Design. He has served as Associate Editor of the IEEE Transactions on
CAD, IEEE Transactions on VLSI Systems, ACM Transactions on Design
Automation of Electronic Systems, IEEE Transactions on Mobile Computing,
ACM Transactions on Embedded Computing Systems, IEEE Design Test of
Computers, and the Journal of Low Power Electronics. He was a recipient
of the IEEE Meritorious Service Award (2001) and Outstanding Service
Award (2004). He is a Fellow of the IEEE, and Golden Core Member of the
IEEE Computer Society. Prof. Raghunathan received the B. Tech. degree in
Electrical and Electronics Engineering from the Indian Institute of Technology,
Madras, and the M.A. and Ph.D. degrees in Electrical Engineering from
Princeton University.

Transactions on Emerging Topics in Computing

Susmita Sur-Kolay (SMO5) received the B.Tech.
degree in electronics and electrical communication
engineering from Indian Institute of Technology,
Kharagpur, India, and the Ph.D. degree in Computer
Science and Engineering from Jadavpur University,
Kolkata, India. She was in the Laboratory for Com-
puter Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, from 1980 to 1984.
She was a Post-Doctoral Fellow in the University
of Nebraska-Lincoln, Nebraska-Lincoln, NE, USA,
in 1992, a Reader in Jadavpur University from 1993
to 1999, a Visiting Faculty Member with Intel Corporation, Santa Clara, CA,
USA, in 2002, and a Visiting Researcher at Princeton University in 2012. She
is a Professor in the Advanced Computing and Microelectronics Unit, Indian
Statistical Institute, Kolkata. She has co-edited two books, authored a book
chapter in the Handbook of Algorithms for VLSI Physical Design Automation,
and co-authored about 100 technical articles. Her current research interests
include electronic design automation, hardware security, quantum computing,
and graph algorithms. Prof. Sur-Kolay was a Distinguished Visitor of the
IEEE Computer Society, India. She has been an Associate Editor of the IEEE
Transactions on Very Large Scale Integration Systems, and is currently an
Associate Editor of ACM Transactions on Embedded Computing Systems.
She has served on the technical program committees of several leading
conferences, and as the Program Chair of the 2005 International Conference
on VLSI Design, the 2007 International Symposium on VLSI Design and Test,
and the 2011 IEEE Computer Society Annual Symposium on VLSI. Among
other awards, she was a recipient of the President of India Gold Medal from
IIT Kharagpur.

Niraj K. Jha (S°85-M’85-SM’93-F’98) received
his B.Tech. degree in Electronics and Electrical
Communication Engineering from Indian Institute of
Technology, Kharagpur, India in 1981, M.S. degree
in Electrical Engineering from S.U.N.Y. at Stony
Brook, NY in 1982, and Ph.D. degree in Electrical
Engineering from University of Illinois at Urbana-
Champaign, IL in 1985. He is a Professor of Elec-
trical Engineering at Princeton University. He is a
Fellow of IEEE and ACM. He received the Distin-
guished Alumnus Award from LIT., Kharagpur. He
has served as the Editor-in-Chief of IEEE Transactions on VLSI Systems and
an Associate Editor of IEEE Transactions on Circuits and Systems I and II,
IEEE Transactions on VLSI Systems, IEEE Transactions on Computer-Aided
Design, and Journal of Electronic Testing: Theory and Applications. He is
currently serving as an Associate Editor of IEEE Transactions on Computers,
Journal of Low Power Electronics and Journal of Nanotechnology. He has also
served as the Program Chairman of the 1992 Workshop on Fault-Tolerant
Parallel and Distributed Systems, the 2004 International Conference on
Embedded and Ubiquitous Computing, and the 2010 International Conference
on VLSI Design. He has served as the Director of the Center for Embedded
System-on-a-chip Design funded by New Jersey Commission on Science and
Technology. He is the recipient of the ATT Foundation Award and NEC Pre-
ceptorship Award for research excellence, NCR Award for teaching excellence,
and Princeton University Graduate Mentoring Award. He has co-authored or
co-edited five books titled Testing and Reliable Design of CMOS Circuits
(Kluwer, 1990), High-Level Power Analysis and Optimization (Kluwer, 1998),
Testing of Digital Systems (Cambridge University Press, 2003), Switching
and Finite Automata Theory, 3rd edition (Cambridge University Press, 2009),
and Nanoelectronic Circuit Design (Springer, 2010). He has also authored
15 book chapters. He has authored or co-authored more than 400 technical
papers. He has coauthored 14 papers, which have won various awards. These
include the Best Paper Award at ICCD93, FTCS97, ICVLSID98, DAC99,
PDCS02, ICVLSIDO03, CODES06, ICCD09, and CLOUDI10. A paper of
his was selected for The Best of ICCAD: A collection of the best IEEE
International Conference on Computer-Aided Design papers of the past 20
years, two papers by IEEE Micro Magazine as one of the top picks from
the 2005 and 2007 Computer Architecture conferences, and two others as
being among the most influential papers of the last 10 years at IEEE Design
Automation and Test in Europe Conference. He has co-authored another six
papers that have been nominated for best paper awards. He has received
14 U.S. patents. He has served on the program committees of more than
150 conferences and workshops. His research interests include FinFETs, low
power hardware/software design, computer-aided design of integrated circuits
and systems, digital system testing, quantum computing and secure computing.
He has given several keynote speeches in the area of nanoelectronic design
and test.

https://mc.manuscriptcentral.com/tetc-cs





