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Sign recognition is an integral part of autonomous cars. Any misclassification of traffic signs can potentially lead to a multitude
of disastrous consequences, ranging from a life-threatening accident to even a large-scale interruption of transportation
services relying on autonomous cars. In this paper, we propose and examine realistic security attacks against sign recognition
systems for Deceiving Autonomous caRs with Toxic Signs (we call the proposed attacks DARTS).

Leveraging the concept of adversarial examples, we strategically modify innocuous signs/advertisements in the environment
in such a way that they seem normal to human observers but are interpreted as the adversary’s desired traffic sign by
autonomous cars. Further, we pursue a fundamentally different perspective to attacking autonomous cars, motivated by the
observation that the driver and vehicle-mounted camera see the environment from different angles (the camera commonly
sees the road with a higher angle, e.g., from top of the car). Bridging concepts from optics (in particular, lenticular printing),
security, and computer vision, we propose a novel attack against vehicular sign recognition systems: we create signs that
change as they are viewed from different angles, and thus, can be interpreted differently by the driver and sign recognition.

We extensively evaluate the proposed attacks under various conditions: different distances, lighting conditions, and camera
angles. We first examine our attacks virtually, i.e., we check if the digital images of toxic signs can deceive the sign recognition
system. Further, we investigate the effectiveness of attacks in real-world settings: we print toxic signs, install them in the
environment, capture videos using a vehicle-mounted camera, and process them using our sign recognition pipeline. We
find our attacks to achieve attack success rates of over 90% in both the digital and real-world settings. We further suggest a
countermeasure based on adversarial training to protect against adversarial example-based attacks.

Our proof-of-concept attacks shed light on a fundamental security challenge associated with the use of sign recognition
techniques in autonomous cars, paving the way for further investigation of overlooked security challenges of autonomous
cars.
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1 INTRODUCTION
The rapid technological and scientific advancements in artificial intelligence (AI) and machine learning (ML) have
led to their deployment in ubiquitous, pervasive systems and applications, such as authentication systems [1, 2],
healthcare applications [3, 4], and several vehicular services [5–8]. The ubiquity of machine learning provides
adversaries with both opportunities and incentives to develop strategic approaches to fool learning systems
and achieve their malicious goals [9, 10]. A number of powerful attacks on the test phase of ML systems used
for classification have been developed over the past few years, including attacks on Support Vector Machines
[11, 12] and deep neural networks [13–15]. These attacks work by adding carefully crafted perturbations to
benign examples to generate adversarial examples. In the case of image data, these perturbations are typically
imperceptible to humans. While these attacks are interesting from a theoretical perspective and expose gaps
in our understanding of the working of neural networks, their practical importance remains unclear. The main
question to be addressed is “What is the nature and extent of the attacks that can be carried out on real-world
ML systems?’.

Real-world ML systems can broadly be categorized into two categories, cloud-based ML as a Service (MLaaS)
systems [16–19] and systems which interact with the physical-world, such as face recognition for authentication
and surveillance [20], and computer vision subsystems of self-driving cars [21, 22]. MLaaS providers often make
their models available to clients [23], so attackers who can generate adversarial examples for these models
represent a threat to a large number of possible targets. MLaaS providers typically provide query-based access to
their models for users, a fact which has been leveraged to develop powerful query-based attacks on these systems
[24–27]. These attacks are all carried out in a virtual setting and are not affected by the noise introduced when
sensing and capturing the physical world. A limited number of attacks on ML classifiers which interact with the
physical world have been proposed [28, 29]. Kurakin et al. [28] print out virtual adversarial examples and take
pictures of these, which are then passed through the original classifier. Sharif et al. [29] attack face recognition
systems by allowing subjects to wear printed glasses with the adversarial perturbations necessary for the faces to
be misclassified. However, both these attacks were carried out in a very controlled laboratory setting, making
their effectiveness unclear in a real-world scenario. Further, they rely entirely on the presence of adversarial
examples to attack the underlying systems. In this paper, we expand the scope of attacks on real-world ML
systems by demonstrating physically realizable and robust attacks on the computer vision systems of autonomous
cars, which are widely used for traffic sign recognition among other uses.

We focus on autonomous cars since they are arguably the most important upcoming application of ML [5, 6].
A number of corporations have forecast the presence of autonomous cars on our roads in the next decade [30]
and the size of the future global market has been estimated to be as high as seven trillion dollars [31]. Since the
computer vision systems of current and future autonomous cars are likely to be based on neural networks [21, 22],
the existence of physical world attacks on neural networks would represent a significant threat. However, as
mentioned earlier, the attacks on virtual systems listed above do not translate directly to the real world. This
occurs because the methods used generate virtual adversarial examples do not account for varying physical
conditions which may include brightness variation, camera artifacts, shadow and reflection, orientations and
distances and the loss of detail from image re-sizing. A technical report by Evtimov et al. [32] has performed a
preliminary investigation of these issues. A detailed comparison with our work is in Section 6. Another issue that
has not been investigated in this setting before is that the adversary may not have access to the internal details of
the computer vision system used, and will thus have to carry out attacks in a black-box setting.

We overcome these hurdles and propose new attacks targeting the traffic sign recognitionmodules of autonomous
cars. The main thrust of the attack revolves around creating a fake sign that has one semantic meaning to
humans but is classified as a different, and in some situations, dangerous, traffic sign by autonomous cars. The
misclassification of traffic signs by autonomous cars can lead to serious real-world consequences including road
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Neural network classifierSelf-driving car’s front cameraNormal traffic sign Classification output: 
Speed limit (80)

Correct

Benign sign

(a) Operation of the computer vision subsystem of an AV under benign conditions

Fake traffic sign Neural network classifier Classification output:
Stop

Car unexpectedly 
stops on a highway

Self-driving car’s front camera

Accident

Adversarial sign

Incorrect

(b) Operation of the computer vision subsystem of an AV under adversarial conditions

Fig. 1. Difference in operation of autonomous cars under benign and adversarial conditions. Figure 1b shows the
classification result for a drive-by test for a physically robust adversarial example generated using our Adversarial Traffic
Sign attack.

(a) Adversarial Traffic Sign (b) Logo Attacks (c) Custom Sign Attacks (d) Lenticular Attacks

Original

Adversarial

Adversarial sign 
classified as:

Stop Speed limit (30) Stop StopNo overtaking Speed limit (30)

Straight 
view

Angled
view

Traffic sign – traffic sign
lenticular image

Logo – traffic sign
lenticular image

Fig. 2. Toxic signs for our traffic sign recognition pipeline generated using the Adversarial Traffic Sign attack
and the Sign Embedding attacks (2(a)-(c)) (Logo and Custom Sign) as well as the Lenticular Printing attack (2(d)).
The adversarial examples are classified as the desired target traffic sign with high confidence under a variety of physical
conditions when printed out. The Lenticular Printing attack samples flip the displayed sign depending on the viewing angle,
simulating the view of a human and the camera in a AV.

accidents and widespread traffic confusion. For instance, a fake speed limit sign, created by adding perturbations
barely visible to humans to an actual speed limit sign could be classified as a stop sign by an AV, causing the car
to slow down on a busy highway when it is not meant to. This is illustrated in Figure 1.

To demonstrate our attacks, we generate physically robust adversarial examples from innocuous signs as well as
from existing road signs as shown in Figure 2(a)-(c). We also go beyond the phenomenon of adversarial examples
by demonstrating attacks based on Lenticular Printing, shown in Figure 2(d), which can operate in a purely
black-box setting. In these attacks, the sign that is visible changes depending on the viewing angle, so a sign
appearing as a innocuous logo to a human could appear as a potentially dangerous traffic sign to the camera on
the AV. Thus, our DARTS attack comprises three separate attacks, namely Sign Embedding, Adversarial Traffic
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Sign and Lenticular Printing. We evaluate the real-world viability of the adversarial examples by setting up a
realistic evaluation pipeline shown in Figure 3 which we test in both white-box and black-box settings. We also
propose a possible defense against the attacks we demonstrate based on the concept of adversarial training [14].
All the code and data required to reproduce our results are available at https://github.com/anonymous 1. Videos
of successful drive-by tests with our adversarial examples are provided as supplementary material.
In summary, the contributions of this paper are as follows:

(1) We propose new, physically realizable attacks (DARTS) based on the concept of adversarial examples on
traffic sign recognition systems that are robust in real-world settings. The novel Sign Embedding attack
modifies innocuous signs such that they are classified as the adversary’s desired traffic signs while the
Adversarial Traffic Sign attack modifies existing traffic signs.

(2) We are the first to explore the idea of Lenticular Printing for creating traffic signs that can mislead traffic
sign recognition systems. This method allows us to create signs that look different to humans and to the
camera on an AV, based on differences in the viewing angle. We demonstrate the ease of carrying out such
an attack and how it might be used in a real-world setting. Samples of the lenticular signs are in Figure 2(d).

(3) We construct an end-to-end pipeline for creating adversarial examples that fool traffic sign recognition
systems and are resilient to transformations of the image that may occur during the image capture phase.
Using this pipeline, we carry out an extensive evaluation of our attacks in both physical as well as virtual
settings over various sets of parameters. We consider both the white-box threat model, where the adversary
has access to the details of the traffic sign recognition system, and the black-box one, where such access is
not present. In the virtual white-box setting, our Adversarial Traffic Sign attack (generated from the GTSRB
test set) has a 99.07% success rate without randomized image transformations at test time and 95.50% with.
We found that even in the black-box setting, the success rates remain high at 38.08% with transformations
and at 47.77% without. This result suggests that on average one in three attacks succeeds in the physical
black-box setting. Therefore, while not having any access to the classifier’s information, the adversary only
needs to put up a few fake signs that work on the substitute model locally trained by the adversary in order
to have a successful attack with high probability.

(4) We also conduct a real-world drive-by test, where we attach a video camera to a car’s dashboard and extract
frames from the video for classification as we drive by (Figure 9). In the white-box case, our best Adversarial
Traffic Sign and Sign Embedding attacks have success rates of 92.82% and 96.51% respectively, where the
success rate is the number of frames in which the adversarial image is classified as the target divided by the
total number of frames. In the black-box case using a different classifier, the same set of fake signs exhibit
equally high success rates (96.68% and 97.71%).

(5) We also explore a possible defense against the attacks proposed. The defense, based on the concept of
adversarial training, aids in securing ML systems against adversarial examples. The adversarially trained
model substantially reduces the white-box adversarial success rate of the Adversarial Traffic Sign and the
Sign Embedding attacks (36.35% for the virtual white-box attack on the GTSRB test set). However, future
work is required to reduce the attack success rate even further, considering the adverse implications of
each successful attack.

The rest of the paper is organized as follows: Section 2 describes both adversarial example and lenticular
printing based attacks in detail, Section 3 provides numerous experimental results for these attacks, Section
4 explores possible defenses against these attacks, Section 5 discusses limitations and future work, Section 6
provides an overview of related work and Section 7 concludes.

1Link anonymized for double-blind submission
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2 METHODOLOGY
In this section, we present new methods to generate physically robust adversarial examples as well as attacks
based on lenticular printing. In particular, we introduce Sign Embedding attacks, which modify innocuous signs
such that they are detected and classified as potentially dangerous traffic signs. We also examine the Adversarial
Traffic Sign attack which modifies existing traffic signs such that they are classified in the attacker’s desired class.

2.1 Threat models
We consider two commonly used threat models for the generation of adversarial examples against deep neural
networks: white-box and black-box. The black-box setting also applies to the Lenticular Printing attack.

2.1.1 White-box. In the white-box setting, we assume that the adversary has complete access to the traffic
sign recognition model including its architecture and weights. Further, we focus on the creation of targeted
adversarial examples, since these are more relevant to an adversary aiming to misclassify traffic signs. We briefly
justify the powerful attacker considered in the white-box setting. Consider an attacker who wishes to cause an
AV to detect and misclassify a sign in its environment. In order to carry out this attack, it is conceivable that the
attacker can purchase or rent a vehicle of the kind that is to be attacked, and ‘reverse engineer’ the classifier. It is
known by querying a target classifier on a dataset and obtaining the classification outcomes, a surrogate classifier
that closely mimics the target classifier can be trained [33]. Also, recent work has shown that query-based attacks
can generate adversarial examples which are as effective as those generated using white-box attacks [25]. Thus,
the white-box setting is an important one to consider.

2.1.2 Black-box. In this setting the adversary does not have direct access to the target model and may only
have query access. In this work, we only consider the case when the adversary does not even have query access. In
this setting, black-box attacks rely on the phenomenon of transferability [13, 34, 35], where adversarial examples
generated for a model trained locally by the attacker, remain adversarial for a different, target model. The
Lenticular Printing attack naturally operates in the black-box setting since it relies on an optical phenomenon
and not on the internal structure of the classifier.

2.2 ML systems and adversarial examples
Machine learning systems typically have two phases, a training phase and a test phase [36]. Our focus is on
attacks during the test phase, which are typically known as evasion attacks. These have been demonstrated in
the virtual setting for a number of classifiers [14, 15, 37, 38]. These attacks aim to modify benign examples by
adding a perturbation to them such that the modified examples are adversarial, i.e. they are misclassified by the
ML system. In the case of attacks on the computer vision systems of autonomous cars, the goal of the adversary
is to generate signs that appear benign to humans but are misclassified by the traffic sign recognition system.

2.2.1 Notation and description of ML classifiers. A classifier f (·;θ ) : X → Y is a function mapping from the
domain X to the set of classification outputs Y. The number of possible classification outputs is then |Y|. θ is
the set of parameters associated with a classifier. Throughout, the target classifier is denoted as f (·;θ ), but the
dependence on θ is dropped if it is clear from the context.H denotes the set in which an adversarial example
must lie. ℓf (x,y) is used to represent the loss function for the classifier f with respect to inputs x ∈ X and their
true labels y ∈ Y.

An adversary can generate adversarial example x̃ from a benign sample x by adding an appropriate perturbation
of small magnitude [38]. Such an adversarial example x̃ will either cause the classifier to misclassify it into a
targeted class (targeted attack), or any class other than the ground truth class (untargeted attack). We focus
entirely on targeted attacks since these are more realistic from an attacker’s perspective.
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Since deep neural networks (DNNs) [39] achieve very high classification accuracies in a variety of image
classification settings [40, 41], they are being used for the computer vision systems of autonomous cars [21, 22].
We thus focus on attacks on DNNs in this paper and define some notation specifically for neural networks.
The outputs of the penultimate layer of a neural network f , representing the output of the network computed
sequentially over all preceding layers, are known as the logits. We represent the logits as a vector ϕf (x) ∈ R |Y | .
The final layer of a neural network f used for classification is usually a softmax layer represented as a vector of

probabilities pf (x) = [p
f
1 (x), . . . ,p

f
|Y |

(x)], with
∑ |Y |

i=1 p
f
i (x) = 1 and pfi (x) =

eϕ
f
i (x)∑|Y|

j=1 e
ϕ
f
j (x)

. The loss functions we use

are the standard cross-entropy loss [39] and the logit loss from Carlini and Wagner [15].

2.2.2 Generating virtual adversarial examples. To generate a targeted adversarial sample x̃ starting from a
benign sample x for a classifier f , the following optimization problem studied in [15] leads to state-of-the-art
attack success rates in the virtual setting:

min d(x̃, x) + λℓf (x̃,T ), (1)
s.t. x̃ ∈ H .

Here, ℓf (·, ·) is the loss function of the classifier, d is an appropriate distance metric for inputs from the input
domain X, T is the target class and H is the constraint on the input space. λ controls the trade-off between
minimizing the distance to the adversarial example and minimizing the loss with respect to the target. In essence,
the optimization problem above tries to find the closest x̃ to x such that the loss of the classifier at x̃ with respect
to the target T is minimized. For a neural network, ℓf (·, ·) is typically highly non-convex, so heuristic optimizers
based on stochastic gradient descent have to be used to find local minima [15].

For traffic sign recognition systems, the method described above produces adversarial examples which do not
work well under the variety of conditions encountered in the real world. That is, if the examples generated using
this method were directly used in Step 3 (mount sign and drive-by test) of 3, they would not perform well. In
light of this, there has been some work towards generating physically robust adversarial examples [32, 42]. In
this paper, we greatly refine their methods. Comparisons with our work are expanded upon in Section 6.

2.3 Robust adversarial example generation
In this section, we describe our methodology for generating robust, physically realizable adversarial examples.
We first provide an overview of our attack pipeline from 3 and then describe each of its components in detail.

2.3.1 Attack pipeline. Our pipeline has three steps:
Step 1. Obtain the original image x and choose target class T that the adversarial example x̃ should be classified
as.
Step 2. Generate the digital version of the physically robust adversarial example as follows:
1. Generate mask M for the original image (A mask is needed to ensure that the adversary’s perturbation

budget is not utilized in adding perturbations to the background.)
2. Re-size both the original image and and the mask to the input size of the target classifier2.
3. Run the optimization from Equation 2 to obtain the perturbation δ .
4. Re-size the output perturbation δ and add it to the original image.

Step 3. Print and test the generated adversarial example for robustness in real-world conditions.

2.3.2 Image selection. We use a single image of a cropped traffic sign, re-sized to the input size of the classifier.
This is because, in our case, for the gradient propagation to be applicable, the input image is transformed by the

2 This is 32 × 32 pixels for the classifiers we use, described in Section 3.1.3
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1. Original image
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Logo

Blank Sign

Adversarial 
Traffic Sign

Logo 
attack

Custom 
Sign 
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2.a Find mask to limit adversarial 
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network’s input size
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add to original image to create 
a high-red printable fake sign

Original image

Optimization Output
(low-res adv. 

examples)

2.c Optimization with random transformation

Find optimal 
perturbation with 
Adam optimizer

Batch of randomly 
transformed samples

Attack Pipeline

Fig. 3. Overview of the Attack pipeline. This diagram provides an overview of the process by which adversarial examples
are generated for both the Sign Embedding attack and Adversarial Traffic Sign attacks.

set of predefined transformations with randomized parameters. Our method thus results in a low cost for the
attacker with regards to constructing an adversarial example. In the case of Adversarial Traffic Sign attacks, the
adversary only needs one image of the same class as the original sign which can be easily found on the internet.
The image also does not need to be a real photograph; as we show in our Sign Embedding attacks, any logo or
schematic drawing can be used as well.

2.3.3 Mask generation. A mask is a mapping from each pixel of the image to zero or one. Pixels mapped to
zero are the ones that are not the sign. On the other hand, those mapped to one are on the sign area. To create a
mask, we employ a simple image segmentation algorithm using Canny edge detection to outline the boundary of
the sign and binary dilation to fill in the hole. The code is adapted from [43]. This algorithm works well on all the
sign shapes given that the input image is not of poor resolution.

2.3.4 Optimization problem. Our adversarial example generation method involves heuristically solving a
non-convex optimization problem using the Adam optimizer [44]. The problem set-up is adapted from the general
concept of expectation over transformations [42]. An updating gradient is averaged over a batch of randomly
transformed versions of the original image [32, 45]. The robust adversarial example can be written as a solution
to the minimization problem given below for any input x:

min
δ ∈Rn

c ·
1
B

B∑
i=1

[F (τi (x +M · δ))] +max(∥δ ∥p ,L) (2)
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Perspective
Transformation

Brightness
Adjustment

Image Resizing Combined Random 
Transformation

Original

20-600 pixels         32 pixels

Fig. 4. Transformations used during both training and evaluation to simulate real-world conditions. The final
column of images displays the type of images that are included in the sum in Eq. (2).

where F (x) = max(maxj,T {ϕ(x)j } − ϕ(x)t ,−K) is the logit loss from [15] and ϕ(x)j is the j-th logit of the target
network. τi : Rn → Rn is a transformation function mapping within the image space (n = 32×32×3).M is a mask
or a matrix of zeros and ones with the same width and height as the input image, andM · δ is an element-wise
product of the mask and the perturbation to constrain the feasible region to the sign area. The objective value
is penalized by a p-norm of the perturbation δ in order to keep the adversarial perturbation imperceptible by
humans, and the constant c is adjusted accordingly to balance between the real objective function and the penalty
term. The constant K determines the desired objective value and thus, controls confidence score of the adversarial
example. We introduce an additional constant L to explicitly encourage the norm of the perturbation to be at
least L since overly small perturbations can disappear in the process of printing and video capturing.
To summarize, the optimization tries to minimize the average of the objective function evaluated on a batch

of B images which are generated from a set of transformation functions τ1, ...,τB . For our experiments, the
transformation function is a composition of three different image modifications: (1) perspective transform, (2)
brightness adjustment and (3) re-sizing which are described in detail next.

2.3.5 Transformations. Here, we describe the set of image transformations used in the optimization which
are chosen to virtually generate a batch of input images resembling the varying real-world conditions in which
images of the generated physical adversarial example might be taken. We included three different transformations
in our experiments, each of which was randomized for a particular image while solving the optimization problem
as well as while performing evaluations in the virtual setting. Examples of transformations used for both the
optimization and evaluation phases are shown in Figure 4.
Perspective transformation - Orientations of a sign that appears on an image vary between camera angles,

distances and relative heights. These orientations can be captured by perspective transformation, an image
transformation that maps each of the four corners of a 2D image to a different point in the 2D space. Any
perspective transformation can be characterized by eight degrees of freedom which can be represented by a 3 × 3
projective transform matrix with the last entry being set to 1. Other common image transformations such as
rotation, shearing or scaling are subsets of the perspective transformation. Additionally, this transformation is
simply a matrix multiplication so it is differentiable.
Brightness adjustment - Naturally, cars drive any time of the day so an adversary might need the fake sign

to be able to fool the system under different lighting conditions. The simplest way to simulate settings with
different amounts of light or brightness is to add a constant value to every pixel and every channel (R, G, B) of an
image and then clip the value to stay in the allowed range of [0, 1]. Again, this transformation is differentiable
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because it consists of an addition and clipping similar to an ReLU activation function which is differentiable
almost everywhere.
Image resizing - Due to varying distances between a camera and a sign, an image of the sign detected and

cropped out of the video frame could have different sizes or numbers of pixels. After generated, adversarial
perturbation is upsampled to match its original image’s size and when the adversarial sign is detected on the
camera, it is cropped out and downsampled back to 32× 32 pixels for the CNN to classify. This resampling process
could blur or introduce artifacts to the image, diminishing the intended effect of adversarial perturbation. We use
a nearest neighbours re-sizing technique for the mask and bilinear interpolation for all other images.

The randomized transformation τ used during both the generation and evaluation of adversarial examples is a
concatenation of the three transformations mentioned above. The degree of randomness of each transformation
is controlled by a set of tunable parameters to keep them in a range that provides realistic simulations. In the
generation process, we experiment with different combinations of the parameters to observe their effect and find
the best setting.

2.3.6 Setting up the optimization problem. As mentioned earlier, our optimization program introduces a
number of parameters (c,K ,L,T ,θ , step size, choices of norm) that can be fine-tuned to control the trade-off
between robustness of adversarial examples and their visibility to humans. We choose to use the L1 norm to
constrain the added perturbation which aids in the solution of the optimization problem and serves as a fairly
good surrogate for human perceptibility of perturbations [46]. The parameters can each be optimally tuned using
a line search or a grid search but when optimized in tandem they offer more benefits as they can be adjusted
to suit the particular setting in which the adversary desires to operate. A detailed analysis of the procedure we
followed to obtain the optimization parameters is given in Section 3.4.

2.4 Attack types
Next, we describe two different attacks that rely on the optimization problem laid out in Section 2.3.4: (1) the Sign
Embedding attack, where the adversary is free to disguise adversarial examples as advertisement signs, drawings,
graffiti, etc. and (2) the Adversarial Traffic Sign attack, where the adversary modifies existing traffic signs to
make them adversarial.

2.4.1 Sign Embedding attacks. We propose a novel attack based on the concept of adversarial examples by
exploiting the fact that the shape-based detection part of the traffic sign recognition pipeline can pick up a circular
object that may not be a traffic sign. Under ordinary conditions when no adversarial examples are present, the
false detection does not unduly affect the traffic sign recognition system since
(1) the confidence scores corresponding to the predicted labels of these objects are low
(2) these circular objects are not consistently classified as a certain sign. The predicted label changes randomly

as the background and the viewing angle varies across multiple frames in the video.
Therefore, a traffic sign recognition system, including ours, can choose to treat any detection with these

two properties as an erroneous detection by setting the confidence threshold close to 1 and/or ignoring objects
that are inconsistently classified. However, adversarial examples generated from these benign circular objects
using our optimization are classified consistently as target traffic signs with high confidence under varying physical
conditions. We demonstrate these observations experimentally in Section 3.2.3. Thus, using our attack pipeline,
the adversary is now free to disguise adversarial traffic signs as advertisement signs, drawings, graffiti, etc. Here,
we demonstrate two possible settings in which adversarial traffic signs can be embedded.
Setting 1: Logo attacks - In this attack, images of commonly found logos are modified such that they are
detected and classified with high confidence as traffic signs (Figure 8b). Since these logos are omnipresent, they
allow an adversary to carry out attacks in a large variety of settings. In this scenario, the problem setup (objective
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Image A from 
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B

(a) Overview of the process by which lenticular images are generated. Part of image modified from
existing image on Wikimedia Commons.

Fake traffic Sign 
(Lenticular Attack)

θ𝟏
θ𝟐

Self-driving car Self-driving car’s 
camera sees “no 
overtaking” sign

Human driver sees 
“speed limit (60)” sign

Exploit the difference of heights, hence 
viewing angles, of the camera and the driver

(b) Principle behind an attack based on lenticular printing.

Fig. 5. Illustration of the process of generating a lenticular image and using it to fool the traffic sign recognition
system of a car.

and constraints) is exactly the same as Equation 2 (i.e. the adversarial perturbation should be as small as possible
while still being effective under transformations).
Setting 2: Custom Sign attacks - In this attack, the adversary creates a custom sign that is adversarial starting
from a blank sign (Figure 8c). Custom-made masks on blank signs can lead to the embedding of adversarial traffic
signs in inconspicuous, graffiti-like objects in the environment. This allows the adversary to create adversarial
signs in almost any imaginable setting by using a mask to create images or text that are appropriate for the
surroundings. In this attack, the original sign is a solid color circular sign and the norm of the perturbation
is not penalized by the optimization problem but only constrained by the shape of the mask. This allows the
adversary to draw almost any desired shape on a blank sign and the optimization will try to fill out the shape
with colors that make the sign classified as the target class. In practice, this attack can also be carried out by
the same optimization problem by setting c and L to some large numbers so that the optimization will focus on
minimizing the loss function without penalizing the norm of the perturbation.

2.4.2 Adversarial Traffic Sign attack. In this attack, existing traffic signs are modified using imperceptible
perturbations such that they are classified as a different traffic sign (Figure 8a). This attack is not as wide-ranging
as the Sign Embedding attack, since it requires the modification of an existing sign or the installation of a new
one. From a practical standpoint, installing a modified traffic sign is likely to be draw more attention than an
innocuous logo, which leads us to believe that the Sign Embedding attack is more practical.
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Remarks: Adversarial examples can be created starting from any sign such that they are classified with high
confidence as a potentially dangerous traffic sign. Benign signs in the Sign Embedding attack case do not have
this effect since they are usually classified with low confidence.

2.5 Lenticular Printing
Lenticular printing is a process used to create images that look different when viewed from different angles. A
diagrammatic overview of the process is given in Figure 5a. The change in angle needed to view the different
images can be small, in which case it can be used to provide a ‘3-D’ effect (since the left eye and the right eye see
slightly different images) or, more related in our case, a ‘flip’ effect where two or more images are interlaced and
each one only shows up at certain viewing angles. For the purposes of fooling the computer vision systems of
autonomous cars, we need the fake traffic sign to appear different to the camera mounted on the AV and the
human controller or passenger seated in the car (Figure 5b).
Industrial quality lenticular printing involves specialized machinery and trained personnel to operate it.

Nevertheless, a simple lenticular image can also be produced without the need for specialized equipment by
using either an inkjet or a laser color printer and a lenticular lens. For our purposes, to demonstrate a proof of
concept attack, creating a lenticular image involves two simple steps. First, we obtain two traffic sign images of
the same dimensions, one of which is the adversary’s desired target, and interlace them. Note that we could also
use a logo or a custom sign of the same dimensions to interlace with the desired traffic sign. Then, we print the
interlaced image on photo-quality paper and stick it on the back of a commercially available lenticular lens.
We use a free software called "SuperFlip" available online to interlace the chosen images [47] We choose

lenticular lens with optically clear adhesive on one side for attaching the interlaced image. Otherwise, a laminator
is required to attach the image to the lens, but using a laminator will also result in lenticular images with better
quality. There are three specifications of lenticular lens that play an important role in getting the flip effect at the
desired angles and distances: lines per inch (LPI), viewing distance which depends on LPI, and viewing angles.
While we use commonly available lens with 40 LPI and a 49 degree viewing angle, industrial-quality lenses offer
a wide range of the three specifications to choose from. The adversary may choose the lens that best suit a
particular road or height of a target sign.

3 EXPERIMENTS
In this section, we first describe our experimental setup, after which we present results for both virtual and
real-world attacks, in both white and black-box settings for adversarial examples. We also describe experiments
related to lenticular printing.

3.1 Experimental setup
For our experiments we used a GPU cluster of 8 NVIDIA Tesla P100 GPUs with 16GB of memory each, running
with no GPU parallelization.

3.1.1 Overview of traffic sign recognition pipeline. Our traffic sign recognition pipeline (Figure 6) consists of
two stages: detection and classification. We utilize a commonly used recognition pipeline based on the Hough
transform [48–50]. The shape-based detector uses the circle Hough transform [51] to identify the regions of a
video frame that contain a circular traffic sign. Before using Hough transform, we smooth a video frame with a
Gaussian filter and then extract only the edges with Canny edge detection [52]. Triangular signs can be detected
by a similar method described in [49]. The detected image patch is cropped and passed on to the neural network
classifier to determine whether it is a traffic sign and assign its label. Images classified with a low confidence
score are discarded as false positives for detection. Figure 6 summarizes our traffic sign recognition pipeline, and
the details are given below.
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Our Traffic Sign Recognition Pipeline

Fig. 6. Sign recognition pipeline. The pipeline consists of an initial detection phase followed by a multi-scale CNN as a
classifier. In the virtual setting, a video frame is replaced by a still image.

3.1.2 Detector. For simplicity and without loss of generality, we design our detector to only locate circular
signs on images using a well-known shape-based object detection technique in computer vision, Hough transform
[51]. Triangular signs can be detected by a similar method described in [49]. In detail, our pipeline takes a video
frame as an input and smooths it with a Gaussian filter to remove random noise. The processed images are passed
through a Canny edge detector and then a circle Hough transform which outputs coordinates of the center and
radii of the circles detected. The outputs are used to determine a square bounding box around the detected signs.
The section of the input frame inside the bounding boxes are cropped out of their original unprocessed image and
resized to 32 × 32 pixels which is the input size of the neural network classifier.

3.1.3 Classifier in the white-box setting (CNN A). Our classifier is based on a multi-scale convolutional neural
network (CNN) [53]. The resized outputs from the detector are directly fed to the CNN which, in turn, outputs
confidence scores for each of the 43 classes. The label with the highest confidence is chosen as the final output
only if its confidence is above a certain threshold. The detected objects that are not traffic signs generally have a
low confidence score and are filtered out by the threshold. This assumption is further proven by examples in
Section 3.2.3.
Our CNN has 3 convolutional layers and 2 fully connected layers. There is also an extra layer that pools

and concatenates features from all convolutional layers, hence the name multi-scale. The training procedure is
adpated from [54]. The model is trained on data-augmented training set (86,000 samples, 2,000 for each class)
generated by random perspective transformation and random brightness and color adjustment. There is no
image preprocessing. The training takes 41 epochs with learning rate of 0.001. Dropout and weight regularization
(λ = 1e−3) are used to reduce overfitting. The accuracy of the model, which will be referred to as CNN A,
on the validation set is 98.50%. The model is defined in Keras [55] using Tensorflow [56] backend. The entire
recognition pipeline (the detector combined with the classifier) is tested with the German Traffic Sign Detection
Benchmark (GTSDB) [57] where it achieves a reasonable mean average precision (mAP) [58] of 77.10% at the
intersection-over-union (IoU) of 0.5.

3.1.4 Classifier in the black-box setting (CNN B). For the black-box threat model, described in Section 2.1.2, we
assume that the adversary has no access to any information regarding the neural network classifier. Therefore,
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Fig. 7. The auxiliary dataset. Some high-resolution images sampled from the auxiliary dataset. The auxiliary dataset is a
combination of real traffic sign photos and computer-generated drawings in front of a simple background.

to evaluate our attacks in this case, we keep the recognition pipeline the same but simply replace CNN A with
a different CNN which will be referred to as CNN B for the rest of this paper. CNN B is a standard CNN (not
multi-scale) with four convolutional layers and three dense layers. It is trained on the same dataset as CNN A,
and achieves an accuracy of 98.66% on the validation set of GTSRB. The mean average precision (mAP) of the
entire pipeline with CNN B on the GTSDB dataset is 81.54%. In the black-box setting, the attacks are generated
based on CNN A which is assumed to be trained by the adversary as a substitute model for the true classifier in
use, CNN B. All experiments in Section 3.3 use this black-box pipeline to evaluate the attacks.

3.1.5 Datasets. We use the German Traffic Sign Recognition Benchmark (GTSRB) [59] to train and test the
classifier. GTSRB is a widely-used standard dataset for traffic sign recognition. It contains more than 50,000
images of 43 types of traffic signs in total. Each image is a 32 × 32 RGB image with the pixels scaled to lie in
[0, 1]. We choose GTSRB over the LISA Traffic Sign Dataset [60] because GTSRB offers a much larger number of
samples so we can be more confident that the success of the attacks does not come from the weakness of the
classifier due to the lack of training data.
Auxiliary high-resolution dataset. To create fake traffic signs that look realistic, we searched for a number
of high-resolution traffic sign images to use as original images to generate the Adversarial Traffic Sign attacks
with our attack pipeline. They are a mixture of real photographs and computer-generated drawings, which are
much easier to find than the former, on an arbitrary background image. We passed the images through our mask
generation module and chose only ones that provide an accurate mask. We ended up with 22 images, some of
which are shown in Figure 7. For the rest of the paper, we refer to them as the auxiliary dataset.

3.1.6 Evaluation metrics. We again note that unless specified otherwise, we only consider the targeted attack
scenario and an adversarial example is considered successful if it is classified as the target label. Thus, the attack
success rate in the virtual setting is

Virtual attack success (VAS) =
∑N

i=1 1{f (x̃i )=Ti and f (xi )=yi }∑N
i=1 1{f (xi )=yi }

(3)

where x̃i is the adversarial example generated from the ith original sample xi with the target label Ti and the
original label yi .
Manually printing out and evaluating the effectiveness of adversarial examples in a real-world setting is

prohibitively expensive. In light of this, we propose a method to evaluate how physically robust adversarial
examples are likely to be by simulating varying conditions in which the images of them might be taken. This
allows us, and by extension, an adversary, to determine which adversarial examples are likely to work in a
real-world setting and test those in the type of real world setup described in Section 3.5. The physical conditions
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Attacks VAS SPAS DR Avg. norm (L1)

Vanilla Optimization 96.38% 9.88% 89.75% 0.18
Vanilla Optimization (our pa-
rameters) 97.91% 46.74% 52.26% 30.45

Adversarial Traffic Sign 99.07% 95.50% 3.60% 31.43
Table 1. Comparison of our method (Eq. (2)) with the Vanilla Optimization problem (Eq. (1)) in terms of attack
success rates, deterioration rate and average norm in the virtual white-box setting. These results are for 1000
randomly chosen samples from the GTSRB test set.

are virtually simulated by a combination of the randomized image transformations described in Section 2.3.5.
w (we use 10 here) of these sets of transformation are applied to each adversarial and original sample, and the
transformed images are directly fed into the target classifier to determine the predicted labels. The simulated
physical attack success is then

Simulated physical attack success (SPAS) =
∑N

i=1
∑w

j=1 1{f (τj (x̃i ))=ti and f (τj (xi ))=yi }∑N
i=1

∑w
j=1 1{f (τj (xi ))=yi }

(4)

Another important metric needed to properly evaluate the physical robustness of adversarial examples, is the
deterioration rate of attack success after transformations. It can be formalized as

Deterioration rate (DR) = 1 −
SPAS
VAS

(5)

A higher deterioration rate implies that the adversarial examples are more likely to degrade under the transfor-
mations, and by extension in a real-world setting.
In order to measure the perceptibility of the perturbations, we compute the L1 norm of the perturbation for

each adversarial example, successful or not, and average it over the entire set of data. Similarly, to determine how
confident the classifier is on successful adversarial examples, we compute and report the average confidence of
the target class over all successful adversarial examples.
Remark (virtual and physical settings). All results reported in the virtual setting involve benign and adver-
sarial examples that remain in a digital format throughout. The results for simulated physical attacks (SPA) also
pertain to images of this nature. Only the results in Section 3.5 are for adversarial examples that were printed out
and then subsequently passed through the recognition pipeline.

3.2 Virtual white-box attacks
The slowest step in the generation of each adversarial example is running the optimization from Eq. (2). Each
example takes about 60s to generate on the hardware we use. We stop the optimization run after 3000 steps for
each sample since the change in loss between subsequent runs is vanishingly small.

3.2.1 Adversarial traffic sign. We compare the adversarial examples generated using our method to those
generated by the optimization problem in Eq. (1) (referred to as Vanilla Optimization) on a random subset of
1000 traffic signs chosen from the test data of the GTSRB dataset. The result shown in Table 1 demonstrates
that our attack has a much lower deterioration rate (DR) compared to the Vanilla Optimization attacks. The
Vanilla Optimization attack with the same parameters as our attack indicates that forcing perturbation to be
large (having a large norm) can increase its robustness to transformation to a certain degree. However, our attack
can achieve a much lower deterioration rate with a similar average norm emphasizing the substantial effect the
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Attacks VAS SPAS DR Avg. confidence

Adversarial Traffic Sign
(auxiliary dataset) 54.34 % 36.65 % 32.6% 0.9721

Logo 85.71% 65.07% 24.1% 0.9753
Custom Sign 29.44% 18.72% 36.4% 0.9508

Table 2. Attack success rates and deterioration rate for Sign Embedding and Adversarial Traffic Sign attacks in
the virtual white-box setting with auxiliary dataset.

addition of random transformations to the optimization problem has on improving the physical robustness of
adversarial examples.
In addition to the experiment with test images from the GTSRB dataset, we use high-resolution images from

the auxiliary dataset to generate Adversarial Traffic Sign attacks for the physical setting. The GTSRB test images
are too low-resolution for large-scale printing. Similarly to the Logo attack experiment, each of the 22 images in
the auxiliary dataset is used to generate 20 Adversarial Traffic Sign attacks for 20 randomly chosen target traffic
signs. Therefore, one experiment contains 440 attacks in total. The attack success rates of the attack with the
auxiliary dataset is reported in Table 2.
Remarks. We note that there is a difference in the VAS achieved with the auxiliary dataset and the GTSRB data
for the Adversarial Traffic Sign attack. We believe this difference occurs due to the existence of a mask for the
auxiliary dataset, which restricts perturbations to only lie on the sign and also due to the up- and down- sampling
that occurs during the process of adding adversarial perturbations. This same effect carries over to the Logo and
Custom Sign attacks, which use data of a higher resolution than the input to the classifier.

3.2.2 Sign Embedding attack. In this attack, we modify high-resolution images of innocuous signs and logos
such that they are classified in the desired target class.
Logo attack. We use seven different circular logos as the original images to generate the Logo attacks. They
are high-resolution images, similar to the auxiliary dataset. Each of the seven original logos is passed through
our attack pipeline to create 20 different Logo adversarial examples, each meant to be classified as a different,
randomly chosen target traffic signs, totalling 140 Logo attacks. While the adversarial perturbation on the logos
significantly affects the classification results, it is generally not very visible to humans and usually blends in
with the detail of the logos. The attacks achieve an impressive VAS of 85.71% and SPAS of 65.07% as reported
in Table 2. Some successful Logo attacks are displayed in Figure 8b. The adversarial signs are classified as their
corresponding target label with high confidence. This way, the adversary can expect the desired misclassification
with much higher probability and consistency than simply putting up a random sign and hoping that it will be
classified as a certain traffic sign.
Custom Sign attack. Three circular blank signs of the colors blue, orange, and white are drawn on the

computer and used as the original images for the Custom Sign attacks. Each blank sign is matched with six
different custom masks (a heart, a star, words "Hello, World!", etc.). Each of the total 18 pairs of a blank sign and a
mask is used to generate 10 Custom Sign attacks which would be classified as 10 randomly chosen target traffic
signs. In total, 180 Custom Sign attacks are created for the virtual evaluation.

Some Custom Sign attacks are shown in Figure 8c. The attack produces adversarial signs that contain the shape
of the mask filled with various colors. In Figure 8c, we pick some of the signs whose mask is filled well so the text
or the shape is clearly visible. Some of the attacks do not fill up the entire mask resulting in incomplete shapes.
This attack is considerably different from the Logo and the Adversarial Traffic Sign attacks as the optimization
constraint is moved from the norm of the perturbation to its location instead. This new constraint seems to be
more strict than the previous one, causing the attack success rate to drop as shown in Table 4.
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(a) Classification of Adversarial Traffic Sign attack examples. The adversarial examples are classified with high confidence as
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(b) Classification of Logo attack examples. The adversarial examples are classified with high confidence as a real traffic sign,
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(c) Classification of Custom Sign attack examples. The adversarial examples are classified with high confidence as a real
traffic sign, in spite of being custom made signs.

Fig. 8. Frequency of the top-3 labels the given images are classified as under 100 different randomized transfor-
mations. The bar chart on the right of each image provides the average confidence of the top classification outcomes over
the 100 randomized transformations.

3.2.3 Confirming hypothesis about classifier confidence. To confirm our earlier hypotheses with regard to the
confidence of classification for signs outside of the training set, we apply random transformations to create 100
images for each of the logo signs. The "Original" column of Figure 8b shows that the logo signs are classified as
different classes depending on the transformation and with low confidence on average. As a comparison, the
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Attacks Black-box VAS Black-box SPAS Avg. confidence

Adversarial Traffic Sign
(GTSRB test data) 47.77% 38.08% 0.8838

Adversarial Traffic Sign
(auxiliary dataset) 7.14% 6.08% 0.9273

Logo 14.28% 12.57% 0.8717
Custom Sign 3.33% 6.00% 0.7193

Table 3. Black-box attack success rates for Adversarial Traffic Sign and Sign Embedding attacks. Adversarial exam-
ples generated for CNN A are tested on CNN B.

"Real" column of Figure 8 shows that real traffic signs (one of the 43 labels) are consistently classified as the
correct label with probability very close to 1.
Again, under 100 different randomized transformations, the Custom Sign attacks are mostly classified as the

target class with high probability. Note that even though the original solid color signs shown in the "Original"
column of Figure 8c are classified with high confidence, their classified labels are uncontrollable by the adversary
and are highly dependent on the signs’ orientation and brightness. For example, a slight change in the camera
angle may yield different labels which is an undesirable effect in the adversary’s perspective.

Main takeaway. Both the Sign Embedding and Adversarial Traffic Sign attacks achieve high attack success
rates of up to 90% in the virtual white-box setting, along with high-confidence classification for the successful
adversarial examples. We note that from a practical perspective, the adversary only needs a few signs to achieve
her aims, so even an attack success rate of 50% is high, since this presents the adversary with a large number of
possible options to try.

3.3 Virtual black-box attacks
As discussed in Section 2.1.2, the phenomenon of transferability enables black-box attacks on ML classifiers when
query-access is not present. Since we generate all our adversarial examples for CNN A, we test their effectiveness
on CNN B. Note that we assume the adversary has access to the training dataset but this is a valid assumption in
many cases since datasets are often open-sourced.
Below, we demonstrate that our physical adversarial examples are effective even in the black-box scenario

where the adversary does not have access to the architecture nor the weights of the neural net classifier. We
tested the adversarial examples generated from the recognition pipeline with CNN A on the one with CNN B, as
described in detail in Section 3.1.4.
Table 3 shows adversarial success rate in a black-box setting, suggesting the transferability of adversarial

examples. As expected, while there is a significant drop in adversarial success rates, in real-world scenarios, the
adversary can simply put up different fake signs, and only one of them needs to successfully fool a traffic sign
detector. We demonstrate the success of our black-box attack in a real-world setting in Section 3.5.

3.4 Parameter tuning
The set of initial parameters was manually chosen to maximize the VAS on the auxiliary dataset while maintaining
a low average perturbation as measured in the L1 norm. We use the L1 norm since we found it to achieve the
best trade-off between the various performance metrics such as VAS, SPAS and DR that we considered. Due
to this trade-off, we chose not to use a grid search to fine the optimization parameters. Once we had a set of
parameters that worked well, we changed each of the parameters individually to understand their effect on
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Description Parameters VAS SPAS DR Avg. norm (L1)

Chosen params c = 3,K = 100,L = 30,T =
128,θ1 = 0.07,θ2 = 0.15 54.34% 36.65% 32.55% 37.71

Perturbation
norm

L2 norm (c = 0.2,L = 2) 27.04% 15.09% 37.23% 76.74
L2 norm (c = 0.02,L = 2) 14.03% 7.76% 44.69% 54.13
L∞ norm (c = 5e−5,L = 0.1) 43.37% 24.41% 43.72% 162.76

Adversarial
confidence

K = 50 48.21% 28.58% 40.71% 32.89
K = 200 59.69% 50.91% 14.71% 50.53

# of transformed
samples

T = 32 54.59% 32.08% 41.23% 35.44
T = 512 46.43% 37.81% 18.57% 35.82

Degree of
transformation
(θ1: perspective
transformation,
θ2: brightness
adjustment)

θ1 = 0,θ2 = 0 31.89% 6.26% 80.37% 31.87
θ1 = 0.03 44.13% 8.88% 79.88% 33.21
θ1 = 0.15 51.79% 44.88% 13.34% 43.70
θ2 = 0 52.55% 34.56% 34.23% 36.61
θ2 = 0.075 52.80% 35.68% 32.42% 36.94
θ2 = 0.30 50.26% 39.34% 21.72% 39.40

Table 4. Variation in attack success rates, deterioration rates and average norm of attack with different sets of
optimization parameters. Rows with numbers in bold represent parameter settings that achieve a good trade-off between
the various performance metrics. However, both these rows have a higher average perturbation norm than the chosen set of
parameters.

the attack performance metrics. Fist, we set the parameter L to control the norm of the output perturbation.
Depending on the type of norms used in the objective function, L can be chosen roughly to any number larger
than zero to force the algorithm to explore more solutions that cause targeted misclassification instead of finding
those that merely minimize the norm. With L chosen for each norm, we vary the constant c , norm p, the number
of transformation T , and degree of randomness of the transformations. We use θ1 for perspective transformation,
θ2 for brightness adjustment and θ3 for image resizing. We find that varying θ3 does not significantly affect the
outputs and thus do not discuss it further
The baseline attack uses L1 norm with the parameters c = 3,K = 100,L = 30,T = 128,θ1 = 0.07,θ2 = 0.15.

Table 4 shows results from 13 experiments each of which vary specified parameters from the baseline. We use
Adam optimizer to solve the optimization problem with learning rate (step size) of 0.02 without decay.

It must be noted that all four result columns of Table 4 must be viewed in conjunction, instead of only
considering one column, because they represent the trade-offs of the attacks. For example, we can see that
by increasing the degree of randomness (θ1,θ2), attack success rates generally increase, but the norms also
become larger making the perturbation more noticeable. In particular, setting θ1 = 0.15 results in the second
highest physical success rate and the lowest deterioration rate, but it also produces perturbation with the sec-
ond largest norm. Similarly, setting K to be larger encourages the optimization to look for more adversarial
solutions which also comes with the cost of a large perturbation. Increasing the number of transformations
makes the attack more successful under transformation while reducing the success rate in the virtual setting
slightly. In fact, using 512 transformations produces both high physical attack success rate and a small norm
for the perturbation with only the expense of longer computation time. For an adversary who only needs a
few adversarial signs, he or she can afford to use a large number of transformation or even run a search for
optimal parameters for a specific setting. For the Custom Sign attack, since there is no constraint on the norm of

, Vol. 1, No. 1, Article . Publication date: February 2018.



DARTS: Deceiving Autonomous Cars with Toxic Signs • :19

Medium

Close

Far

Adversarial Traffic Sign Logo Attack Custom Sign Attack
Distances

Attacks

Fig. 9. Classification outcomes for adversarial examples in the drive-by test. All combinations of distances and attacks
lead to the desired classification outcome with high confidence. Even frames captured at around 25 metres from the sign
lead to high confidence targeted misclassification.

the perturbation both c and L and are increased to obtain perturbations that fit within the mask and are adversarial.

Main takeaway. The number of tunable parameters in the optimization represents an advantage for the adversary
since they can be tuned to achieve the desired trade-off between the different performance metrics. We chose a
particular set of parameters that worked well for our evaluation setting, and clarified the changes in performance
that occur when these are tweaked.

3.5 Real-world attacks
To evaluate real-world attacks, we use a different metric since the number of adversarial examples used is smaller.
In this section, the attack success rate reported is computed by counting the number of frames in which a sign
was detected in the input frame and classified as the target class and dividing this number by the total number of
frames in which there was a detection. In other words, we can express this as:

Drive-by attack success rate =
No. of frames that the sign is misclassified
No. of frames that the sign is detected

(6)

3.5.1 Adversarial examples: white-box. To demonstrate the effectiveness of our adversarial examples in the
real world, we carried out drive-by tests (shown in Figure 9) on two samples from each of our attacks (Adversarial
Traffic Sign, Logo, and Custom Sign). We chose only those samples that performed well under the simulated
physical attack. Each sample is re-sized to 30×30 inches and printed on a high-quality poster. The printed signs
are stuck on a pole on the left side of the road that the car would be passing by. A GoPro HERO5 was mounted
behind the car’s windshield to take videos of 2704×1520 pixels at 30 frames per second. Starting around 25 meters
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(a) Camera height of 1.5metres.
Signs classified as ‘Speed limit
60’, ‘Turn left’ and ‘Turn right’
respectively, with a confidence
of 1.0.

(b) Camera height of 0.8metres.
Signs classified as ‘No passing’,
‘Speed limit 60’ and ‘Turn left’
respectively.

(c) Camera height of 0.5metres.
Signs classified as ‘No passing’,
‘Speed limit 60’ and ‘Turn left’
respectively.

Fig. 10. Proof of concept implementation of the Lenticular Printing attack. These images show that if the camera
used for the traffic sign recognition module of an AV is at a different height from the human controller, then the Lenticular
Printing attack can fool the classifier, while appearing to be correct to the human.

from the sign, the car approached it with an approximate speed of 16kmph. The traffic sign recognition pipeline
only detects and classifies once every five frames to reduce the processing time and redundancy.

Each of the drive-by attack success rates reported below is an average of three runs. For the Adversarial Traffic
Sign, 92.82% of the detected frames are classified as the adversary’s target label, 52.50% for Logo attack, and
96.51% for the Custom Sign attack.

3.5.2 Adversarial examples: black-box. In a manner identical to Section 3.3, to set up the black-box setting, we
replaced the neural network classifier CNN A, in the traffic sign recognition pipeline with CNN B and kept the
other parameters the same. We use this new pipeline to evaluate the same videos captured in the drive-by tests.

With the same set of signs that perform best in the white-box case, the Adversarial Traffic Sign and the Custom
Sign attacks both achieve very high success rates of 96.68% and 97.71% respectively, comparable to the white-box
setting. The Logo attack, on the other hand, has an adversarial success rate of 0.00%, compared to 52.50% in the
white-box case. However, a different Logo attack achieves an adversarial success rate of 47.43% in the white-box
case and 32.73% in the black-box one. These results ascertain that some adversarial examples generated from one
network are capable of fooling other networks, thus relaxing the assumption that the adversary must have access
to weights and architecture of the target network.

3.5.3 Lenticular printing: black-box. In these experiments, we aim to show that the difference in viewing
angle between the camera on an AV and the human controller or passenger can lead to an attack, since the
human will see an appropriate sign, while the camera will see the targeted sign, which could be dangerous in
that environment. To simulate what the human will see, we take pictures from different heights showing the sign
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changing. We emphasize that the adversarial nature of these examples stems purely from the viewing angle, and
the human and the camera would recognize the sign as the same if they viewed it from the same angle.
In our experiments with the Lenticular Printing attack, we stuck three different signs on an indoor surface

(Figure 10). These signs flip between ‘Speed limit 60’ and ‘No Passing’, ’Turn left’ and ’Speed limit 60’, and ’Turn
left’ and ’Turn right’ respectively. We take pictures of these signs at different heights using a standard mobile
phone camera at a distance of 1.9 metres from the signs. The camera is held parallel to the plane of the cupboard.
In all cases, when passed through our traffic sign recognition pipeline, each sign classified was classified as the
appropriate one for that viewing angle with high confidence.

Main takeaway. In the drive-by tests, both the Sign Embedding and Adversarial Traffic Sign attacks achieve
attack success rates in excess of 90%. Videos of these attacks in practice are provided as supplementary material.
These decrease to around 40% in the black-box setting, but even this represents a successful attack for the
adversary, since she only needs it to be misclassified in a few frames to cause harm. The Lenticular Printing
attack is also demonstrably successful in an indoor setting.

4 COUNTERMEASURES: ADVERSARIAL TRAINING
In this section we examine a possible defense against the attacks described earlier in the paper. The defense is
based on the concept of adversarial training [14]. In this paper, we are the first to analyze the effectiveness of
adversarial training, and its recent variant, iterative adversarial training [61] against physically robust adversarial
examples. While adversarial training can aid in defending against attacks based on adversarial examples, it is not
effective against lenticular printing based attacks.

The simplest attack against DNNs is known as the Fast Gradient Sign (FGS) [14] attack, and it is an untargeted
attack that involves adding a perturbation proportional to the sign of the gradient of the loss function of the
neural network:

x̃ = x + ϵsign(∇xℓf (x,y)). (7)

The advantage of this attack is that it is extremely fast to carry out so it can be incorporated into the training
phase of neural networks to make them more robust to adversarial examples. The training loss is modified as
follows:

ℓadvf (x,y) = αℓf (x,y) + (1 − α)ℓf (x̃,y), (8)

where α ∈ [0, 1] controls the influence of the adversarial component of the loss. This modification to the loss
function has been found to increase the robustness of DNNs against both targeted and untargeted adversarial
examples [14]. Ideally, in order to defend against adversarial examples generated using Eq. (2), the x̃ in Eq.(8)
should be those same examples. However, as mentioned earlier, each adversarial example generated using our
method takes around 60s to generate. This makes it impractical to run the optimization for every training batch.
Note about norms. We note that the perturbation in the FGS attack is constrained using the L∞ norm. This
choice is not unique with regards to carrying out fast attacks and any p norm can be used. In our experiments,
we tried training with adversarial examples constrained with the L1, L2 and L∞ norms and found the defense to
work best with an L∞ norm constraint.

4.1 Results with adversarial training
We trained CNN A using the loss function in Eq. (8) with α = 0.5 and ϵ = 0.3 for each adversarial example
generated during the training process. While our attack samples have on average a maximum L1 perturbation of
around 30, the L1 with that radius is too large to train with, since the ball has to lie in the unit hypercube. Since
most of the adversarial examples do not modify each individual pixel by more than 0.3, it is a reasonable upper
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Attacks VAS SPAS DR Avg. confidence

Adversarial Traffic Sign
(GTSRB test data) 36.35% 27.52% 24.29% 0.9428

Adversarial Traffic Sign
(auxiliary dataset) 2.53% 2.47% 2.37% 0.9358

Logo 11.42% 7.42% 35.02% 0.8054
Custom Sign 6.67% 5.77% 13.49% 0.9957

Table 5. Attack success rates and deterioration rate on adversarially trained CNN A for Sign Embedding and
Adversarial Traffic Sign attacks in the virtual white-box setting with auxiliary dataset.

limit to use while training. The model was trained for 15 epochs and has an accuracy of 96.37% on the GTSRB
validation set. The virtual white-box attack results are given in Table 5 and demonstrate the effectiveness of
adversarial training as a defense as the VAS on the GTSRB test data drops from 99.07% to 36.35%. Similarly, the
VAS for the Adversarial Traffic Sign attack using auxiliary dataset drops to 54.34% to 2.53%, from 85.71% to 11.42%
for the Logo attack and from 29.44% to 6.67% for the Custom Sign attack. It has a similar effect on the SPAS.

Main takeaway. While the adversarial training defense does not completely eliminate the presence of adver-
sarial examples, it helps to mitigate their impact. It results in a small drop in accuracy on benign samples, which
can be problematic in real-world settings. We leave the exploration of countermeasures with better trade-offs
and which are able to handle the Lenticular Printing attack for future work.

5 LIMITATIONS AND FUTURE WORK
In this section, we discuss some limitations of our approaches for both attacks and defenses and outline possibilities
for future work to overcome these limitations.

5.1 More complex detectors
To improve the robustness of the traffic sign recognition system and reduce the false positive rate in real-world
settings, the system could be set up to filter out detected objects that are not consistently classified (with high
confidence scores) as the same type of signs across a sequence of multiple frames. This design decision can help
reduce the false positive rate because erroneous detection such as random noise and other circular objects are
unlikely to be classified as the same label with high confidence across multiple frames. In our current setup, we
find a low false positive rate for the adversarial examples, which indicates that they would perform well even
under such a modified system.
Further, while our system has performed well in real-world settings in spite of its simplicity, more robust

traffic sign recognition systems have been proposed recently in the literature. These are typically neural network
based detectors such as Faster R-CNN [62] and YOLOv2 [63] that simultaneously handle both detection and
classification in real time. However, attacking these detectors is not a simple extension of ideas explored in this
paper due to the mechanism by which recognition occurs. Adversarial examples for these detectors need to remain
adversarial regardless of their position in the captured frame [64]. While some recent work has proposed attacks
on these detectors, these attacks are either restricted to virtual settings [65] or add overly large perturbations
making recognition difficult for humans as well [66]. We are currently working on overcoming these issues and
demonstrating powerful real-world attacks on state-of-the-art detectors.
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5.2 Fooling synthesis of sensor inputs
The computer vision subsystem of an AV, while critical, is not the only actor in the decision making process
when confronted with a new situation. A number of other sensors such as LIDAR, GPS, radar etc. also provide
inputs which are then synthesized to come up with a decision [67]. While the computer vision subsystem is the
only one able to recognize a traffic sign, the other sensors may be able to indicate that the sign recognized is
incompatible with their inputs. This consideration is out of the scope of the current work, but we plan to explore
simultaneous attacks on these varied subsystems in future work.

5.3 Black-box attacks
While our results in Section 3.5 for real-world black-box attacks were encouraging, there is scope for improvement.
In particular, methods such as using an ensemble of local models to increase targeted transferability [35] have
been successfully demonstrated for real-world attacks on ML models hosted by MLaaS providers and could be
useful in achieving higher rates of transferability. We plan to investigate if our process of generating physically
robust adversarial examples by adding transformations during the optimization process plays a role in increasing
the transferability of adversarial examples. Further, the existence and effectiveness of black-box adversarial
examples for neural network based detectors is an open research question which we plan to explore in future
work. The results for lenticular printing we presented in this work are exciting as they represent a completely
unexplored dimension for attacks on autonomous cars but we believe there is scope for further research in this
direction. We plan to explore the creation of more robust and consistent lenticular printed samples in future
work, which are effective for a broader range of angles.

5.4 Choice of norm
In this paper, we chose the L1 norm to measure the visibility of adversarial perturbations as done in several
previous works on virtual attacks [15, 46, 68]. However, it is still an open research question if this is the best
choice of distance function to constrain adversarial perturbations. Previous work on generating adversarial
examples has explored the appropriateness of other commonly used Euclidean norms such as L∞ [14] and L2
[15, 69] as well. Especially in the context of future work on generating physically realizable adversarial examples,
we encourage further work on conducting user studies to determine the most appropriate proxy for measuring
human perceptibility of adversarial perturbations.

6 RELATED WORK
There is now a large body of work on virtual attacks on machine learning systems. Evasion attacks, occurring in
the test phase, have been proposed for Support Vector Machines [11], random forests [70] and neural networks
[13–15, 71]. Poisoning attacks, which occur during the training phase, have also been proposed for a variety of
classifiers and generative models [72–76]. Attacks have also been proposed on policies for reinforcement learning
[77] and models with structured prediction outputs [78]. All the evasion attacks described above are for the virtual
white-box setting. Black-box attacks on real-world models deployed by MlaaS providers have been proposed
using the phenomenon of transferability [13, 27, 35]. Since these attacks require access to a representative training
dataset which may not be available to the adversary in certain situations, black-box attacks which depend purely
on queries to the target model have also been demonstrated [24–26].
There has been little previous work on evasion attacks that work in a real-world setting. The first to explore

the possibility that visual adversarial examples remain adversarial even when passed through cameras were
Kurakin et al. [28]. They printed out adversarial examples generated using the Fast Gradient Sign attack and
passed them through a camera to determine if the resulting image was still adversarial. This attack was restricted
to the white-box setting and the effect of varying physical conditions was not taken into account. Sharif et al. [45]
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investigated how face recognition systems could be fooled by having a subject wear eyeglasses with adversarial
perturbations printed on them. While their attack results were encouraging, they did not rigorously account
for varying physical conditions and only took multiple pictures of a subject’s face to increase the robustness of
the attack. Further, they only tested their black-box attacks in a virtual setting with query access to the target
model. Athalye et al. [42] introduced the concept of Expectation over Transformations to automatically generate
adversarial examples robust to varying physical conditions and carried out a preliminary indoor investigation of
the method. Petit et al. [79] examine the susceptibility of the LIDAR and camera sensors in an autonomous car
but their attacks are unable to cause targeted misclassification.

Concurrent work in a similar vein to ours is presented in a technical report by Evtimov et al. [32]. They have
performed a preliminary investigation of the threat posed to autonomous cars by physical adversarial examples
by printing these out and evaluating them in a drive-by test. They account for varying physical conditions while
creating adversarial examples by starting from pictures of traffic signs taken under different conditions and
performing a joint optimization over these. In comparison, our attack utilizing random image transformations
only requires a single image or even a drawing of the target sign, instead of a large set of real photographs. This
makes our approach much more scalable. Another distinction between our method and the one used by Evtimov
et al. [32] is in the optimization formulation. They update the perturbation with average of the gradients of the
objective function with respect to the transformed input space, but our method uses the direct end-to-end gradient
of the objective function with respect to the original input space of images. We achieve this by exploiting gradient
back-propagation from the transformed input space through the composition of differentiable transformation
functions to the original space. This method yields a more accurate update for solving the optimization problem.
To the best of our knowledge, we are the first to explore Sign Embedding attacks, Lenticular Printing attacks,
black-box attacks in the physical setting as well as possible countermeasures using adversarial training.

7 CONCLUSION
In this paper, we have demonstrated a wide range of attacks on the computer vision subsystem of self-driving
cars. Sign Embedding attacks allow an adversary to convert any sign or logo into into a targeted adversarial
example, while the Adversarial Traffic Sign attack converts one traffic sign into another for a ML classifier with
the addition of small perturbations. The Lenticular Printing attack moves beyond the paradigm of adversarial
examples to create images that look different from varying heights, allowing an adversary to stealthily embed
a potentially dangerous traffic sign into an innocuous one, with no access to the internals of the classifier. We
demonstrated the effectiveness of our attacks in both virtual and real-world settings. We are the first to carry out
black-box attacks in a real-world setting as well as to propose and evaluate possible countermeasures against
physical realizations of adversarial examples. We have also provided a comprehensive analysis of future research
directions which we hope will encourage further research into securing physically deployed machine learning
systems.
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